

Olin Sailbot Code Report

By Olin Sailbot Code Team 2011-2012:

Jason Curtis Andrew Heine Elizabeth Mahon Luis Rayas

Oliver Gallitz Jared Kirschner Jaime McCandless Steven Zhang

Table of Contents
1 Introduction .. 4

2 LabVIEW .. 4

3 Platforms ... 5

Platform A: Simulation .. 5

Platform B: Small R/C (Radio-Controlled) Boat .. 6

Platform C: Competition Boat .. 8

4 Sense ... 9

Output Selection ... 9

Driver Structure .. 10

Reading serial data .. 11

Parsing NMEA sentences ... 12

GPS Uncertainty .. 13

Defiltering ... 13

5 Think ... 17

What is Think .. 17

Different Components, Roadmap .. 17

 Arbiter .. 17 5.1
Why/What it does ... 17

Priority Balancing ... 18

Priority Details ... 18

 Missions: Determining Waypoints ... 19 5.2
Diagram key .. 21

Drive .. 21

Round Buoy .. 22

Pass Between Buoys ... 25

Station Keeping ... 26

 Addition of Non-ideal Elements ... 28 5.3
Currents affect max speed in any direction. .. 30

Currents and wind affect the path you’ll end up on. ... 30

Weatherhelm ... 31

 Navigation (getting to waypoints) .. 31 5.4
Elements in Decision Process. .. 31

Fastest way to the waypoint. .. 32

Avoiding No-Sail Zones ... 33

Keeping the Current Heading. ... 34

Combining Goodness Functions. ... 34

Getting wind data while the boat is running .. 35

6 Act ... 36

Rudder Control .. 37

Sail Control ... 37

7 Logging ... 38

Message Logging .. 39

Status Log Processing ... 39

Message Log Processing .. 40

8 Operator Control Unit (OCU) .. 40

Monitoring .. 41

Networking ... 42

Manual Override ... 43

Tuning .. 44

Mission Map ... 45

Mission Input ... 46

1 Introduction

Person in charge of this section: Jason

The task of sailing is not a simple one. A sailor must use multiple sensory inputs and
balance numerous priorities in order to make headway in the desired direction. The
robot employs a combination of numerical optimization, fuzzy logic (in the form of
“goodness functions”), and subsumption to accomplish the task of robotic sailing. An
object-oriented architecture is used to split each of the events of the International
Robotic Sailing Competition into smaller missions and complete them.

Our code architecture follows a standard robotic architecture, whereby the active
area of the code is divided into three sections: Sense, which perceives the outside
world, processed, and entered into a state knowledge model, Think, where state
information and goals are combined to make decisions, and Act, wherein actuators
are controlled to implement those decisions in the physical world. In addition, we have
programmed an Operator Control Unit (OCU) for the robot, which allows us to
remotely download mission data, monitor telemetry, and override the robot’s controls.

2 LabVIEW

The software platform used on our robot is National Instruments LabVIEW. In the
LabVIEW Development Environment we use G, a data-flow based, automatically
parallelizable, graphical programming language that allows for efficient creation of
highly accessible code. A simple example is illustrated in Figure 1 and 2.

Figure 1: Code in a simple LabVIEW "block diagram"

Figure 2: the automatically created “front panel” interface for the code shown in Figure 1. As the code is
run, even when it is used within other LabVIEW code, key data can be monitored here.

LabVIEW was chosen because of the ease with which it can be debugged and its
integration with National Instruments computing and data collection hardware. This
has facilitated the effective and seamless testing and development of the same
LabVIEW code on different computer systems.

3 Platforms

Person in charge of this section: Jason

To provide development flexibility, the code team has three platforms capable of
running the same Think code. The three platforms are a simulator, a small R/C boat,
and the competition boat. Each platform, by necessity, has its own sensors and
actuators, so the Sense and Act code is written separately for each platform. On the
other hand, the more nuanced and complex Think code has the potential to be
usable on any sailing platform, and we take lengths to make it so. The same Think
code is therefore used on our three platforms. By running the same Think code on
three separately accessible platforms, we are able to test and actively develop the
code in anywhere from a basement desk to the high seas. We are not reliant on the
availability of open water, wind or even a physical boat to test our code architecture.
This has been extremely important in reducing the critical path for the Olin Sailbot
team.

Platform A: Simulation

The first platform, built before any physical devices were available to us, is the
simulator. Free of timing and location constraints and expensive equipment, the
simulator lets our coders test algorithms anywhere they have their laptops.

Figure 3: Simulator Sense/Think/Act configuration. For the simulator, everything occurs on the onshore
host computer.

Since it doesn’t involve any actual water or wind, the simulation is also largely free of
realism. The simulated boat has velocity, rotation and location based on simulated
wind conditions and basic physics approximations that occur on the host computer
(Figure 3). The complexity of the simulation was initially kept to a minimum, but has
been upgraded to include realistic currents and drag forces so that more complex
behaviors can be tested. In addition, we have inserted helper functions that add
randomness to movement and measurements in the simulator to simulate real-world
unpredictability.

Platform B: Small R/C (Radio-Controlled) Boat

To get our algorithms running in real sailing conditions, we need something that
controls a real sailboat. Thus, the Small R/C platform.

http://olinsailbot.files.wordpress.com/2012/02/configuration-simulator.png

Figure 4: the Small R/C boat as seen from above, with visual tracking pattern visible astern and Wi-Fi
receiver visible at the center of the image.

On the Small R/C platform, we can test algorithms that can easily be transferred over
to the race boat. The Small R/C platform consists of an off-the-shelf 1m Vela remote-
control sailboat modified to carry a Wi-Fi-connected receiver in place of the stock RC
receiver. The boat runs in a 20ft diameter pool in Olin’s Large Project Building, with a
set of fans for wind.

Figure 5: Small R/C Test Platform Sense/Think/Act configuration.

http://olinsailbot.files.wordpress.com/2012/02/configuration-smallrc.png

Since there is not enough space for sensors and computing power on the boat, the
sensing and “think”ing occurs on an offboard computer (Figure 5). An overhead
camera using machine-vision tracking algorithms provides simulated “sensor data” to
the Think section of the code, converting the location of the boat to simulated UTM
coordinates.

Tracking optimizations
With the varying lighting conditions in the pool, it proved challenging to reliably track
the motion of the boat in the pool.

Two tracking patterns, one the black/white inverse of the other, are tracked
independently, such that only one needs to be found in order for the boat’s location
to be found. When both patterns are detected, the locations are used in conjunction
to approximate the location of the boat.

To reduce false positives, the area of the camera outside the circle of the pool is
masked out of the image before tracking occurs.

Small RC conclusion
When the Small R/C boat gets lost and goes adrift, it’s always within reach of the pole
that we keep handy for just such an occurrence. This platform is fantastic for
debugging and tuning, but it’s still in a “sandbox”, several steps away from the high
seas.

Platform C: Competition Boat

This brings us to the most important platform: the competition boat. For the
competition and the future we’ll need a self-contained system that can run our code
and sail on the high seas. For this we’re using a National Instruments single-board RIO
onboard our 2m custom-built sailboat.

Figure 6: Competition Boat Sense/Think/Act configuration. All computation occurs on the onboard real-
time computer, which interfaces with the onboard sensor suite and motors.

4 Sense

In charge of this section: Jaime

Our sensing requirements are fulfilled by a single all-in-one sensor: the Airmar
WeatherStation. General specifications for the sensor can be found in Section. We
wrote our own sensor driver in LabVIEW to parse the NMEA 0183 serial data output by
the sensor. In addition, we have implemented a “defilter” to counteract the
WeatherStation’s built-in smoothing functions.

Output Selection

The WeatherStation is capable of outputting a wide range of NMEA 0183 data
packages, each at variable frequency up to 10Hz. However, the sensor is limited by a
maximum 38400 baud rate, so we programmed it to output only the relevant subset of
its full capability:

Header Data type Freq. (Hz)
GPDIM Datum Reference 0
GPGGA GPS Fix Data 0
GPGLL Geographic Position—Latitude and Longitude 5
GPGSA GNSS DOP and Active Satellite 0
GPGSV Satellites in View 0
GPRMC Recommended Minimum GNSS 0
GPVTG COG and SOG 5
GPZDA Time and Date 1
HCHDG Heading, Deviation, and Variation 0

http://olinsailbot.files.wordpress.com/2012/02/configuration-competition.png

HCHDT True Heading 5
TIROT Rate of Turn 10
WIMDA Meteorological Composite 1
WIMWD Wind Direction and Speed 0
WIMWV Wind Speed and Angle 5
WIMWR Relative Wind Direction and Speed 0
WIMWT True Wind Direction and Speed 0
YXXDR Transducer Measurements 0

Driver Structure

The general structure of the driver is:

1. Initializing the sensor
2. Reading the serial data one byte at a time and bundling it into NMEA sentences
3. Parsing each NMEA sentence to extract and store the data

The sensor must be initialized every time it is powered on. After that, the serial read
loops through bytes until it has assembled a full NMEA sentence. The sentence is
passed to the NMEA parser, which extracts and stores the data.

Sensor initialization routine
The sensor’s default start-up setting (which cannot be changed) is to communicate on
4800 baud. We want to maximize the serial communication rate, so every time we start
up we have to reprogram the sensor to communicate on 38400 baud. This initialization
routine is shown in Figure 7.

Figure 7: WeatherStation initialization routine: “1A Helper – Init Sensor.vi”. First, the VI opens a serial port
at 4800 baud and checks to see if it can read data from the sensor. If so, it commands the sensor to set
its baud rate to 38400 instead, then closes the original serial port and opens a new one at 38400 baud.

Reading serial data

During normal operation, the sensor reads and parses on NMEA sentence at a time via
the “1A Read Sensor Data.vi”.

NMEA 0183 sentences are structured:

$HHHHH,…*ss

In which the “$” denotes the start of a sentence, the “HHHHH” is a five-character
header describing the data package to follow, the “…” is a string of comma-delimited
data, and the “*ss” is the two-character checksum at the end. Thus, the VI waits for a
“$”, then fills a string with any characters between the “$” and the next “*”, the
checksum marker. This is illustrated in Figure 8.

Figure 8: Reading one sentence of NMEA 0183 data. The VI reads serial data one byte at a time, first
waiting for the “$” which denotes the start of a sentence, then saving each byte in a string until the end

“*” checksum marker is reached.

Parsing NMEA sentences

The “1A Interpret NMEA Sentence.vi” parses a single NMEA sentence to extract data. It
also updates the relevant global variable when appropriate.

Figure 9: An example of NMEA sentence parsing.

GPS Uncertainty

In charge of this section: Elizabeth

We rely on the GPS for a significant portion of our information. In addition to our
position, we use it to calculate our velocity, and, from there, the apparent wind.
Furthermore, knowing our position is essential to knowing if we have accomplished any
of our missions. As a result, knowing how accurate it is at any point is extremely
important. According to Airmar, under optimal conditions our sensor should be
accurate to within 3 meters. However, these optimal conditions are very specific. We
need a clear view of at least four satellites, as well as being able to contact an
additional wide area augmentation system (WAAS), which provides adjustment data
to the sensor.

In testing, we determined that under most circumstances, we tend to have drift of
about 5 to 10 meters over a period of 10 minutes. As a result, while we can trust our
GPS to have a fairly accurate difference between two points in close succession, over
time it will not be nearly as reliable. This is in part because we do not consistently
communicate with the WAAS satellite.

To improve and manage the error within our GPS calculations, we took a few steps.
First, when the GPS only has a view of 3 satellites or has a bad view of more than 3, it
uses a “2D” fix, in which it cannot determine altitude. In this mode, it is less accurate.
However, it is possible to give it a fixed altitude for it to use when it is in this mode,
which increases its accuracy, so we did. It is also possible to get a reading of the
estimated precision from the sensor, which is called the dilution of precision. To help
the human in the loop understand the potential inaccuracy and change their
commands accordingly, we acquire this information and display it on the OCU.

Defiltering

In charge of this section: Jason and Steven Z

In testing, we found that the wind speed and direction outputs from the Airmar PB200
sensor are filtered with some kind of moving average filter such that any sudden
change in wind speed or direction input results in an output with a lag on the order of
a few seconds of time lag.

For example, Figure 10 shows a trial we did of measuring the PB200’s wind direction
sensitivity by suddenly rotating the PB200 while facing a fan. The response time of the
PB200 is on the order of ten seconds.

Figure 10: Airmar PB200 wind direction response

The PB200’s wind speed output has similar sensitivity issues:

Figure 11: Airmar PB200 wind speed response

Obviously, this kind of response is not ideal, since our boat is making decisions about how to trim the sails and
rudder on the order of seconds, not tens of seconds. Deviation of measured wind direction from actual wind
direction could cause huge miscalculations. Wind speed sensitivity is not as important as wind direction, but could
still affect performance.

Methodology
We took video (http://youtu.be/XG9UZ7fsSPE) showing us doing an impulse and step
response of wind speed. Ideally we’d use a wind tunnel, but we hacked something
together with a fan and a big wooden board.

Contacting Airmar
We called Airmar and their sales rep. informed us that indeed, the output of the wind
sensor is filtered “over many seconds” since that’s what the majority of users
(presumably owners of non-robotic boats) demanded.

Evidently, some customer segments had similar needs as us and wanted a more
sensitive wind sensor, so Airmar plans to release a sensor with unfiltered output later this
year. The sales rep. told us that they may be able to get us a sample of this sensor
early. The sales rep. also promised to ask the engineering department and find the
filtering specifications for us, but Airmar never responded to our repeated email
requests. Thus, we decided characterize the filter ourselves and create an “unfiltering
filter,” or “defilter”, in software.

The solution: Theory
The theory behind unfiltering the PB200 is rather simple. The PB200 applies a filter h(t) to
the input signal (in this case, the actual wind speed or direction). We want to create a
filter in software that negates it with impulse response h^(-1)(t).
Ideally, the system diagram would look like this:

Figure 12: “defiltering” concept diagram

The output signal from our filter will inevitably have noise or other source-induced error

http://youtu.be/XG9UZ7fsSPE

(denoted by s(t) in the diagram above). We want to minimize s(t) when we construct
h^(-1)(t)

Finding h(t)
The first step to constructing h^(-1)(t) is finding the impulse response h(t). As the name
suggests, this is as simple as giving the PB200 a sudden, but short, gust of wind for wind
speed, and a quick rotation back and forth for wind direction. We used the fan and
wooden board technique described above for generating the short and sudden
gust#. We smoothed the data a bit to get the following impulse response for wind
speed:

It was a bit tricky to collect data for the impulse response of wind direction. We ended
up taking the time derivative of the step response to get the following plot:

Calculating h-1(t)
A simple way to calculate h^(-1) (t) is just to take the inverse Fourier transform of the
reciprocal of the frequency response H(ω). To show why this works, we have the
condition for h^(-1) (t) such that

h(t)*h^(-1) (t)=δ(t)

h(t)*h^(-1) (t)*x(t)=x(t)

where * is the convolution operator. Taking the Fourier transform of both sides, we get:

H (ω)⋅H ^(-1) (ω)=1

So the Fourier transform of h^(-1) (t) is just the reciprocal of the Fourier transform of h(t).
However, the problem with this direct approach is that any small noise in H(ω)
becomes really big as one takes the reciprocal. So we used a more sophisticated
approach that compensated for this effect for small values of H(ω). We used a
threshold gamma inverse filter adapted from here.

The result
Our “unfiltering” filter works quite well. Here’s a video of the wind speed filter working.
Pay attention to the laptop screen on the bottom left. The white line shows our
defiltered output, while the red fill shows the direct, filtered output from the PB200. You
should be able to see how much more responsive the white line is than the red filled
line:

Limitations
We encountered some problems applying this technique to the wind direction data.
The main problem was the data wrapping that is inherent with angular measurements

http://www.owlnet.rice.edu/~elec539/Projects99/BACH/proj2/code/inverseFilter.m

(when wind is blowing at 350 degrees, a slight movement can cause the data to jump
to 0 degrees). We resolved this by playing around with some angle unwrapping
functions. In the end, we used the filter coefficients generated for wind speed for
angle. It seemed to work rather well.

Internally, the PB200 apparently measures wind speed by measuring wind speed in x
and y axes independently and pythagorating the vectors. Apparently, the individual x
and y-direction speed measurements are filtered before being summed. Evidence of
this comes from our experiments when the PB200 is at steady state wind speed, any
rotation causes the speed to quickly drop down to 0 before slowly coming back to
steady state. This is something we can’t really address, so we’ll have to hope that this
effect doesn’t affect things too much during competition.

5 Think

In charge of this section: Luis

What is Think
The think loop is responsible for synthesizing behaviors which can be performed by the
act loop using as input the data collected by the sense loop. The majority of the
control logic is contained within the think loop. We have designed the system such
that the think loop can be utilized modularly between different boat platforms. This
section will detail the processes which take place in the think loop.

Different Components, Roadmap
The think loop contains the code which determines decision priorities (the arbiter),
organizes the structure used to define missions and objectives (mission class), and
makes navigational decisions (waypoint navigation). These overarching processes are
discussed in order in this section.

 Arbiter 5.1

In charge of this section: Luis

Why/What it does

The purpose of the Arbiter is to determine which high level priorities should be
considered. We run 4 algorithms in parallel that output sail and rudder setpoints. Each
algorithm considers one of four primary goals of the boat:

-Manual Override: do what the controller is telling it to do

-Don’t Flip: that would be bad

-Mission Objective: so that we may win

The arbiter decides which of these algorithms has priority to ultimately decide what the
‘Act’ block will act upon.

Each algorithm must be constantly running, which means there needs to be a system
to continuously monitor each algorithm and output a pair of setpoint values.

Priority Balancing

In order to organize these priorities, we introduced the idea of “soft” and “hard”
priorities. The soft priority of an input to the arbiter is hardcoded into the arbiter. The
purpose of the soft priority is to define which functions are generally more important.
The algorithms are ordered in “soft” priority like so:

“Soft” priority is used to distinguish from “hard” priority where “hard” priority will be used
to denote which algorithm is setting the setpoints for the boat at any given moment in
time. Since we do not always want to control the boat, and the boat is not always in
danger of flipping, there must be a system to determine when to consider these
priorities and when to pass control onward. “Hard” priority is determined by a pair of
Boolean flags that each objective outputs. When a Boolean flag is set to true, the
algorithm is telling the arbiter “listen to my output now”. The arbiter will consider this,
and if no other algorithm with a higher “soft” priority is outputting true for that flag, the
arbiter will give “hard” priority to this algorithm. The sail and rudder setpoints are set
independently (i.e. each algorithm outputs 2 flags), both in this fashion.

*Default Setpoints are used only when for any reason no input is giving instructions to
the arbiter. In this case we would like a default behavior so that our code has
something to do.

Priority Details

Each priority type has a method which determines when it takes priority and what it
does with the priority. These are as follows:

1. Manual Override

2. Don’t Flip

3. Complete Mission

4. Default Setpoints*

Arbiter

Setpoints
& flags

Final
Setpoints

Priority 1: Manual Override
In charge of this section: Jason

This priority takes effect when a manual override signal is received from the OCU over
the network stream. The operator at the OCU can take individual control of the sails or
rudder as needed. For more details of OCU operation, see section 8 (page 40).

Priority 2: Don’t flip
In charge of this section: Olli

Priority 3: Mission Objective
In charge of this section: Luis

The mission objective priority is active so long as we are not at risk of flipping and the
operator has not taken manual control. The bulk of the intelligence of the boat exists
in the mission objective. A detailed explanation of the mission objective follows in
section 5.2.

 Missions: Determining Waypoints 5.2

In charge of this section: Jared

We have divided the various challenges of the competition into a series of smaller
tasks which we refer to as missions. Any possible sailing challenge can be fully
described as a serial combination of missions. A competition event is programmed as
a series of one or more of these missions, which are executed in successive order. The
current mission will have full control over the path-planning of the boat until the mission
is complete, at which point the next missions will be started.

This approach has two primary difficulties:

• Determining a complete basis set of missions from which larger challenges can
be accomplished

• Providing a given mission with full control over the path-planning of the boat

Rather than determining a complete basis set for missions, we created a modular
design which allows us to implement new types of missions as necessary. If the set of
implemented missions is not sufficient to accomplish some future goal, we can simply
modify the set of missions. Through the abstraction of mission interfaces (the actions
that this class can perform), the updated set of missions will integrate seamlessly with
the existing code.

We implement this abstraction in LabVIEW by creating a GenericMission class which
defines the public interfaces common to every possible type of mission. The four
interfaces are:

1. A method which runs a start-up sequence for the mission
2. A method to update the current waypoints based on mission state and sensor

data
3. A method which indicates whether or not the mission is done
4. A method which indicates the general physical location of the mission, so that

the previous mission can set the boat on an appropriate course to begin the
new mission.

All actual missions are child classes of this generic, abstract class. The currently
implemented class hierarchy is shown in Figure 13. Each mission only needs to override
these four methods and it will integrate seamlessly with the existing architecture. Due
to the object-oriented structure, the proper version of each of these methods is called
based on the identity of the caller child class.

Figure 13: Object-oriented mission structure diagram. Generic Mission defines all of the necessary
interfaces for any child class to be successfully executed by the Think code. Currently, we have defined
four child classes—one for each mission type. Adding another mission type is as simple as creating
another descendent class of Generic Mission.

A competition event is programmed as a series of one or more of these missions, which
are executed in successive order. At any point in time, the mission that is currently
being executed keeps a list of next waypoints for the sailbot to get to, along with a list
of no-sail zones, which the sailbot avoids entering.

The current mission is given full control over the path-planning ability of the sailbot by
being provided with the ability to control the set of waypoints that the boat tries to
reach and the list of no-sail zones which the boat tries to avoid. We have found that

Generic
Mission

Drive Round buoy Pass between
buoys

Station
keeping

these two abilities are sufficient for each of the currently implemented missions to
guide the sailbot towards their completion.

The user is able to programmatically add missions to the sailbot upon start-up or while
running through the OCU. When the user requests that a new mission be added from
the OCU, this new mission is placed into a queue of GenericMission objects—the
parent class of all missions. During each cycle, the “Think” loop checks to see if the
current mission is complete. If so, it removes the first mission from the queue, makes this
mission the new current mission, and then starts the mission. The method which
updates waypoints is then called by the current mission. This method will modify the
waypoints that the boat is constantly trying to satisfy. In this way, each mission is able
to guide the actions of the boat until the mission determines that it has been
completed. By stringing together a series of these missions, a large, complex task can
be completed systematically.

Diagram key

In charge of this section: Jason

Figure 14: Diagram example showing the symbols we use.

Drive

In charge of this section: Jason

The Drive mission is the most basic, and instructs the sailboat to sail to a single
waypoint. It is used internally by our team to test the robot’s navigational capabilities.

No-Sail
Zone

Waypoint
(note radius if
appropriate)

User-input
point (e.g.

buoy)

Boat
movement

arrows

Going right Going left

Going an undetermined direction

5m 5m

Figure 15: the sailbot completing a Drive mission.

Definition
The drive mission is defined by a single waypoint (with radius) with any appropriate no-
sail zones (with radii).

Action
When a Drive mission becomes active, it places a single waypoint with its no-sail zones
into the waypoint list.

End Condition
A Drive mission is complete when the waypoint has been reached.

Round Buoy

In charge of this section: Olli

The algorithm to round buoys has to ensure a certain behavior of the boat:

• The boat has to round the buoy on the desired side
• The official rules for rounding buoys have to be regarded
• The boat must not turn into irons while rounding the buoy

Definition
The drive mission is defined by a single UTM location and a direction of rounding.

Action
Different wind directions make determining a fixed path around buoys almost
impossible. During sailing competitions, many paths can be chosen depending on
opponents, wind speed & direction. To address that, we developed a pattern that
determines the ideal path around a buoy. The path is calculated by working
backwards. The following steps determine the way around the buoy:

1. Create a start and endpoint in a distance determined by the waypoint
tolerance and the safety distance

Waypoint
(user-defined radius)

2. Determine the heading from the endpoint to the next planned waypoint, based
on wind speed

3. Set points on this line in the other direction (behind the rounded buoy)
4. Determine the headings from the starting point to each of the points set in 3.
5. Choose the best one of them (fastest and closest to buoy)

Rounding a buoy is one of the missions in the sailboat competition. To successfully
round buoys in actual sailing competitions, the teams have to regard not only the
wind direction, but also the opponents and their position relative to the buoy and their
own boat. Therefore a wide range of different rounding tactics exist, and most of them
include staying close to the buoy.

We use a basic way of rounding the buoy, in part because the GPS accuracy does
not allow us to get too close to the buoys (danger of rounding them on the wrong side
or sailing into them), and because we cannot react to changing wind conditions as
quickly as humans can through watching the water and weather.

At the sailboat competition, the rules for rounding a buoy imply a line which is
perpendicular towards the “leeward leg”. In the navigation and the long distance
race, the buoys are placed in a way that the boat will always go with or against the
wind to round it. To make this rule more applicable to other challenges and races, we
choose the line from the next waypoint of the mission to the buoy and define a
perpendicular line on this one for the start and endpoints of the buoy rounding.

This makes the Round Buoy code work in the two races where rounding buoy is an
official task, but also in other races if wanted.

Regarding these rules, our tactics for rounding buoys is to build up the ideal path
backwards. Three points will be created to determine the way around the buoy:

Step 1: Depending on the rounding direction, the start and the end point of the
rounding path is created. They will be placed at a predefined distance, which is the
point tolerance plus an additional value, to avoid either checking the wrong waypoint
or running into the buoy. The points are placed on a line that has been calculated
previously.

Figure 16: Round Buoy Step 1

Step 2,3: Starting at the endpoint, a line towards the rounding side of the buoy is
created. This line has the length of the distance between start and endpoint, to avoid
running away from the buoy during the turn. It is at an angle of 45 degrees towards the
line from the endpoint to the starting point.

Figure 17: Round Buoy Step 2

There are five points created on this line, all of them are potential waypoints. An
algorithm calculates the heading towards each waypoint. At the same time, the best
angle VI calculates the fastest heading towards each of those points. The point with

the smallest difference between actual direction and fastest direction will be set as
waypoint.

Figure 18: Round Buoy Step 3

While building up this system, we also had the idea to include the heading towards the
next waypoint as a factor for choosing the angle of the line. This was not efficient
though, as this heading was often far too steep, causing the boat to go a longer path
than necessary. Even though the boat speed would be optimized in this scenario, the
overall time for rounding the buoy was unpredictable and often times longer than in
the running version.

This VI continuously recalculates the waypoint until it reaches the starting point. This
ensures that the waypoints change if the wind changes before the rounding started.
After the starting point has been reached, the CI stops recalculating its waypoints, to
avoid changing the points while trying to cross it (might end up in a loop or getting
further away from the waypoint).

End Condition

The Round Buoy VI creates an array with three waypoints: The Startpoint, the
calculated crossing point and the Endpoint. This array is inserted into the waypoint
array. After this array is created, the VI will be terminated and waits for its next call.

Pass Between Buoys

In charge of this section: Andrew

Passing between buoys is a mission in which the boat passes between two buoys in a
specified direction. This is a subtask of the Navigation Test and the Long Distance
Course. On the Long Distance Course, the distance between buoys is 40 meters,
making the task easier. The Navigation Test employs buoys that are spaced 3 meters
apart. With the limited accuracy of our GPS, which can drift up to seven meters, this
will be difficult. Additionally, we have to ensure that, no matter the conditions, we
follow a path between the buoys. We use a set of three waypoints to more clearly
define the safe path through these buoys. The path is shown in Figure 28. While a
simple, straight path, we have to consider the distances between the waypoints, and
the radii of the tolerances. This avoids the boat trying to travel around the wrong side
of the buoys, because of a strange, but optimal, path. We choose relatively tight
tolerances for the first two waypoints, to ensure a straight line. However, the third
waypoint is easy to check off, since it is positioned after the passing. We also
incorporate small No-Sail Zones in to the waypoints, to avoid a collision with the buoys
themselves, and to further encourage the boat to aim for the center.

Figure 19: Path used for the boat to pass between two specified buoys. The waypoints are
approximately eight meters from each other.

Station Keeping

In charge of this section: Andrew

Station Keeping is an entire event in the competition, and is also structured as a single,
integrated mission in our code. The event involves sailing inside a 40 meter square
boundary for five minutes, and leaving the boundary as soon afterwards as possible.
The coded mission is divided into three phases. First, we simply try to stay in the station.
Second, as the end nears, we continue this goal, but put ourselves in a position more
conducive to quickly leaving. Third, with seconds to go, we leave the station as
quickly as possible. Each of these phases has its own challenges and considerations,
described below.

Port Buoy

Starboard Buoy

Phase 1. Stay in the Station
The first step of station keeping is simply to stay inside the box. To achieve this, we
continue to give the boat waypoints that keep it in control and away from the edges
of the box. We experimented with many patterns, but chose a single waypoint as our
pattern, because our boat was successful at inventing its own pattern to continue to
track the same waypoint. The pattern is shown in Figure 29. Experimentally, this pattern
worked better than using a complicated set of waypoints with theoretical benefits,
such as minimizing tacks. The waypoints simply the midpoint shifted upwind by five
meters, so that if the boat does lose control, it has more time to recover before it is
pushed downwind out of the box. Each of our waypoints also incorporates No-Sail
Zones (section 1.6.1), which keep the boat from taking paths outside of the box to the
next waypoint. This cycle continues, until there are 20 seconds remaining, at which
point, the boat begins Phase 2.

Phase 2. Prepare to Leave
Our strategy for preparing to leave the station is to sail along one of the boundaries of
the box, so that we do not have far to travel when we want to leave. The challenge
here is deciding which edge to follow, and which direction to follow it. We start with
eliminating the two edges that are more downwind, again so that we do not
accidentally drift out. In Figure 29, this would be the bottom and right edges. To
decide between the remaining two, we look ahead to which direction we would
travel along them, and compare those paths. We will choose the direction that allows
us to move to the next preferred edge if we happen to reach the end of the first edge

Figure 20. A map of Phase 1 of the Station Keeping Mission, including
four boundaries, two waypoints, and No-Sail Zones near the boundaries.

during this phase. Knowing this, we can pick the edge that would put the wind more
behind us, so that there is no danger of sailing into irons and losing speed and control.
With this method, we are able to sail upwind, but at least 45 degree off of irons (since
the two options are 90 degrees apart). We also are able to continue sailing on an
upwind edge if we need to continue the phase. This phase can go on indefinitely,
sailing back and forth along this edge. Since our average speed is 3 m/s, we expect
getting to the edge (20 meters) and traversing the edge (30 meters) to take 16
seconds. When only three seconds remain on the five minute timer, the boat begins
Phase 3.

Phase 3. Leave the station
The goal of Phase 3 is to leave the station as soon after the timer as possible. The
beginning of Phase 3 is timed well enough so that its goal is to leave as quickly as
possible altogether. To do this, we make a waypoint outside of the box, this time
without No-Sail Zones. The question of where to put the waypoint is resolved by
picking one which results from a heading with the greatest velocity towards the edge.
This takes both angle and speed into account. We also include a preference for not
tacking. Once we are past the boundary line, we are done with the mission.

 Addition of Non-ideal Elements 5.3

In charge of this Section: Andrew

Figure 21. Path of the boat when following the station's edge.

The formulas in Section 4.4 give us the fastest ideal path. However, that path is difficult
to stay on, since currents and wind push the boat around, in a non-forward direction.
This is called leeway. Additionally, currents affect the max speeds given by the
idealized polar plot. Lastly, we have to consider weather helm, which is the tendency
of the boat to turn upwind, due to heeling. Where we consider these factors is shown
in Figure 32. The details of how we resolve them are discussed below.

Goal
GPS

Desired
Heading

Polar
Plot

Rudder

Current Heading,
Wind, GPS

Figure 31. Block diagram showing the elements that determine steering, before non-ideal
conditions: leeway, currents, and weatherhelm.

Currents affect max speed in any direction.
Because polar plots are affected by currents alone, and not leeway, we cannot
change the polar plot, since we do not separate these terms. However, a theoretical
solution for the shifted polar plots follows. Water currents affect the speed that the
boat can travel by exerting a force on the boat. The speed that the boat can travel
in any direction is affected by the current, and so we must consider this before we
determine the fastest route to a waypoint. We do this by altering the polar plot that is
used in our algorithm. Instead of using absolute wind, in the polar plot, for each point,
we add the projection of the current onto that direction with the speed given by wind.
However, instead of using absolute wind, we use the wind speed relative to the
current. To illustrate this, think of the case where the wind vector is equal to the water
current vector. The max speed is not the sum of these, because the wind does not
add any force beyond the current.

Currents and wind affect the path you’ll end up on.
Not only does the current affect the max speed in the direction that the boat faces, it
pushes the boat laterally, so that the course that we map out for the boat is not the
real course that the boat takes. Wind has the same effect, as it is able to push the
boat sideways in the water, against the drag force of the keel and hull. We can

Goal
GPS

Shifted
Goal GPS

Desired
Heading

Polar
Plot

Corrected
Polar Plot

Rudder

Current

Current Heading,
Wind, GPS

Wind,
Current

Figure 32. Block diagram showing the elements that determine steering, after the consideration of
currents and drift from wind.

calculate the combined effects of these by measuring our movement angle and
comparing it to our heading, or expected movement angle. This will give us only the
current that is perpendicular to our heading, but we will see that this is all we require.
We can then use this feedback to adjust our plan.

Shift the goal.
The solution to this problem is not to turn the boat to stay on the originally-planned
straight-line path. This would change wind angle to the boat, and void the
calculations done for path-planning. Instead, we can predict the total amount of
boat translation that the wind and currents will cause, by integrating the effect over
the time that the calculated path should take. Then, we recalculate the optimal path,
using a target that is shifted by this amount. That way, we use the actual angles to the
wind in calculating the path.

Error in this approach
The problem with this approach is that the predicted amount of wind and current
translation will change when we alter the target and the path. We can repeat this
method, using the recalculated path to predict the total translation, until the amounts
converge. However, at this point, we only implement the estimation once, as the error
is small.

Weatherhelm

Due to heeling and the relationship between center of effort on the sails and the
center of lateral resistance, our boat has a tendency to feel a torque which points it
more upwind. To combat this, the rudder must be set at a different angle than
expected. This is dealt with using a PID controller, described in section 5.

 Navigation (getting to waypoints) 5.4

In charge of this Section: Luis

Choosing a path isn’t simple. Up until now, we’ve described our goals, and where we
need to go to accomplish them. Were we driving a car, we would be nearly done.
However, sailing is a different kind of beast; in this section we describe the logic
necessary to cope with the less straight-forward environment on the water.

Elements in Decision Process.

Navigation on water becomes a bit more complicated than something like driving on
a road when dealing with wind and sail angles because the shortest path is not always
the fastest path. There are 3 primary elements considered in navigating to a
waypoint. These are developed into “goodness functions” which are the main vehicle
through which the boat heading is chosen. The goodness function paradigm is rooted
in fuzzy logic. A goodness function in essence gives the desirability of a given heading

with respect to a certain goal, taking a value between 0 and 1 where 1 is the most
desirable and 0 is absolutely unacceptable. The benefit of this approach is that
multiple unrelated considerations may be taken into account with different goodness
functions. Furthermore, because many headings have a calculated goodness, the
algorithm is able to select a heading that is the most agreeable to many
considerations where a strict logic system may have to deal with conflicting goals in a
variety of situations. In particular, we know that the fuzzy logic approach will always
give a somewhat desirable heading, even if suboptimal, when faced with conditions
that are unexpected or not accounted for. We then give each individual goodness
function an importance weight and take the geometric mean to determine which
heading is the most agreeable.

The 3 elements our navigation system incorporates are getting to the waypoint as
quickly as possible, avoiding no-sail zones, and changing the heading as little as
possible. The following sections will discuss each of these elements in depth and show
how we develop goodness functions that represent these objectives.

Fastest way to the waypoint.

We start with the observation that there is a pair of optimal angles for the boat to
travel upon to reach a waypoint if we assume that there will be no change in the wind
conditions. Since we do not have any method of predicting these changes, we will
work under the assumption that there will be none. We will correct a bit for this
assumption when we consider the heading change goodness function. Once we
agree that there is a single pair of optimal angles, these can be found given the polar
plot for the boat given the current conditions.

In Figure 22 we draw and label the general representation of this problem. The goal
will then be to minimize 𝒕 = 𝒕𝝋 + 𝒕𝜽, or equivalently, maximize 𝒗𝒏𝒆𝒕 = 𝒅

𝒕𝜽+𝒕𝝋
. We begin by

writing the known relationships:

𝒗𝜽𝒕𝜽 𝒔𝒊𝒏(𝜽) − 𝒗𝝋𝒕𝝋 𝒔𝒊𝒏(𝝋) = 𝟎

𝒗𝜽𝒕𝜽 𝒄𝒐𝒔(𝜽) + 𝒗𝝋𝒕𝝋 𝒄𝒐𝒔(𝝋) = 𝒅

Putting the system into matrix form yields

�
𝑣𝜃𝑠𝑖𝑛𝜃 −𝑣𝜑𝑠𝑖𝑛𝜑
𝑣𝜃𝑐𝑜𝑠𝜃 𝑣𝜑𝑐𝑜𝑠𝜑

� �
𝒕𝜽
𝒕𝝋� = �𝟎𝒅�

Solving this system is easy using Cramer’s Rule
and gives us:

𝑡𝜃 = 𝑑 ∗
𝑠𝑖𝑛𝜑

𝑣𝜃 ∗ sin(𝜃 + 𝜑)

𝑡𝜑 = 𝑑 ∗
𝑠𝑖𝑛𝜃

𝑣𝜑 ∗ sin(𝜃 + 𝜑)

Solving for 𝑣𝑛𝑒𝑡 gives:

𝑣𝑛𝑒𝑡 =
𝑣𝜃𝑣𝜑sin(𝜃 + 𝜑)
𝑣𝜃𝑠𝑖𝑛𝜃 + 𝑣𝜑𝑠𝑖𝑛𝜑

In order to define a goodness function that
encompasses this equation and will attempt to
maximize 𝑣𝑛𝑒𝑡 , we use the softmax function,
defined for a series of values 𝑥1 to 𝑥𝑛 as:
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥1, 𝑥2, … , 𝑥𝑛) = log𝑏 ∑ 𝑏𝑥𝑖𝑛

𝑖=1 . For any
given angle θ, we will take the softmax of the
net velocity over every φ, 0<φ<90 in
combination with the given θ. The intention
here is that an angle with a high goodness will
be part of a pair of angles with a high net
velocity and will have a high net velocity when
paired with many angles. Finally, we turn this
value into a goodness from 0 to 1 by taking 1-
exp(-softmax/k) where k is a tuning constant in

units of velocity to normalize our calculated value. This goodness function should then
output a high goodness when the tested heading angle has complimenting pairs with
a short theoretical time to the waypoint.

Avoiding No-Sail Zones

In order to avoid no sail zones and encompass this task in a goodness function, we
begin by considering each no sail zone separately. We will then combine the
goodness functions given by each no sail zone by simply taking the product. Now
considering a single no sail zone, we define the goodness function to be 1 at all angles
that are more than 90 degrees away from the direction of the no sail zone. In other
words, any angle that does not decrease the distance to the no sail zone is perfectly
good. From 0 to 90 degrees (0 being the exact direction of the no sail zone), we
define the goodness function like so:

𝑔𝑜𝑜𝑑𝑛𝑒𝑠𝑠(𝑧) = 1 − 𝑒−
1
𝑘∗
𝑑𝑧−𝑟𝑧
90−θ

Figure 22: Pictorial representation of
waypoint navigation problem

where 𝑑𝑧 is the distance to the center of the no sail zone ‘z’, 𝑟𝑧 is the radius of the no
sail zone (∴ 𝑑𝑧 − 𝑟𝑧 is the minimum distance to the no sail zone), and θ is the angle
between the tested heading and the center of the no sail zone with respect to the
current position. Finally, k is a tuning constant in units of length to normalize our
formula.

Qualitatively we can see that as the distance from the no sail zone increases, the
goodness function increases for all potential headings and that as the heading moves
toward directly at the no sail zone (θ becoming smaller) the goodness function
decreases. Furthermore, as soon as the boat is right up to the radius of the no sail
zone, the goodness function becomes 0 for all headings that are not away from the
no sail zone; this is desirable so that if the boat does come near a no sail zone, it will
inherently be top priority to move away from the no sail zone. Given this, it is simply a
matter of tuning the constant k such that we are not too sensitive nor not sensitive
enough to the no sail zones.

Keeping the Current Heading.

The final element in navigating to a waypoint is simply that we would like to turn the
boat as little as possible. This serves two purposes: the first is to desensitize the targeted
heading to small changes in the goodness functions. This is important so that the boat
keeps from overreacting in short periods of time and will generally cause the boat to
change headings more gradually than all of a sudden.

Secondly, when heading upwind, this goodness function determines the frequency
the boat can tack at. Presumably, heading upwind will yield two peaks in the
goodness function for the fastest way to the waypoint. If we did not consider the
importance of maintaining the current tack whatsoever, the boat would tack infinitely
frequently, essentially approximating a straight line to the waypoint. However, if we
weight headings that are closer to the current heading of the boat, the boat will hold
a tack until the second heading is more desirable than the current heading by a ratio
of at least the goodness difference defined by the current heading goodness
function. This function is simple to define given the current heading ‘h’:

𝑔𝑜𝑜𝑑𝑛𝑒𝑠𝑠 = 𝑒−�
𝜃−ℎ
𝑘 �

2

where again k is a tuning constant with units of radians. This gives us a goodness of 1
at the current heading and decreasing goodness as we move away from the current
heading.

Combining Goodness Functions.

The last step in determining the desired heading is the combination of the goodness
functions described above and selection given this combined curve. The combination

is actually quite simple, it is a weighted geometric average of the goodness functions.
We use the geometric average as opposed to the arithmetic average primarily
because if a given goodness function determines that a certain heading has a
goodness of 0, we want to avoid this heading at all costs, and this is not guaranteed
with the arithmetic average.

Formally, this combination looks like:

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑔𝑜𝑜𝑑𝑛𝑒𝑠𝑠 = (𝑔1𝑤1 ∗ 𝑔2𝑤2 ∗ 𝑔3𝑤3)
1

𝑤1+𝑤2+𝑤3

where g1, g2 and g3 are the three goodness functions and 𝑤1,𝑤2 𝑎𝑛𝑑 𝑤3 are the
respective importance weights. Once we have calculated this combined goodness
curve, we select the heading with the highest combined goodness at which point it
becomes the desired heading which the boat will try to achieve.

Getting wind data while the boat is running

In charge of this section: Olli

The wind sensor is mounted on the bow. As a result, while the boat is on a run the
sensor is obscured by the sails and cannot get proper wind data. After reading out the
logfiles from testing, we saw that the apparent wind directions appears to come from
around +-45 degrees in those cases (wind blows around the sails). The wind speed also
varies under these conditions. This wind data could not be used for sailing, and the
boat would start to become unstable as soon as it receives the proper wind data.

The solution for this issue is to recognize when the boat is on a run. Before the wind
data becomes wrong, it would be replaced by a calculated approximation of the
current wind data. The boat would switch back to sailing with the sensed wind data as
soon as the boat changes its heading by a predefined range. An additional feature is,
that a “convincing range” would terminate this wind data override if the wind is
coming from the completely different direction. This prevents the boat from sailing into
irons in case the wind direction changes completely.

The functionality of checking the wind range values, calculating the override values
for the wind data and activating the override is split up into three Vis.

The first VI is run with every Think Loop iteration. It first compares the wind direction with
the robot’s heading to determine if the robot is getting into the run range. If this is not
the case, the current wind data values get written into an array. This array saves the
wind data of the last five seconds. As soon as the boat is getting into the run range, a
Boolean is set and the array is not filled further. Instead, the second VI of the so-called
“Runprotect” function is run.

This second VI calculates an approximation of the wind data. It reads the previously
described array and generates this value. Two global variables for wind direction and
wind speed are set.

The third VI reads out those global variables. It replaces all previous consumers of the
Apparent Wind and Absolute Wind data. Thus, while the boat is on a run, any VI that
uses wind data will instead receive “runprotected”, simulated data.

Figure 23: The Runprotect Status

6 Act

In charge of this section: Elizabeth and Olli

There are two main actuators on the competition boat: The Sailwinch and the rudder
servo. Both are controlled via PWM signals from our sbRIO. We had to realize the
following functions:

• Rudder control with predefined max range
• No acceptance of out-of-range values for the motors
• Fine-adjustable neutral rudder position
• Maximum Sailwinch range

 Run Range Run Range

Runprotect Off Runprotect On

Figure 24: The Motor PWM Control VI

Rudder Control

In charge of this section: Olli

The rudder control function is a PID controller that creates a rudder angle out of the
current heading and the desired heading. The PID is using hardcoded PID constants.
The Rudder Control is communicating with our PWM Rudder Control, which allows us to
adjust a rudder trim in case the rudder is off centered. It is important to mention, that
the Don’t Flip VI does not override the Rudder control. Even if we are in the Don’t Flip
state, the PID controller is steering to its desired position.

The PWM Rudder Control VI also allows us to set a maximum range. All values that are
out of range will be coerced, or replaced with the closest value in range.

Sail Control

In charge of this section: Elizabeth and Olli

At the heart of our sail control function is a lookup table which has a hardcoded value
for how much to let out the sail depending on what angle we are to the wind. This was
done because a lookup table is easier to manipulate than a function to calibrate to
many varying situations (different sail sizes, different mass distributions of the boat,
different wind speeds), and because few functions would fit the qualitative shape that
we need. At the moment, that shape is to keep the sail in from 0 degrees to 45
degrees, then to let it out in a linear fashion from 45 degrees to 90 degrees, at which
point we would have the sail halfway out. From there, it again linearly increases until it
is fully out when the wind is at our backs, at 180 degrees. In addition to this lookup
table, we test whether the boat is crossing the wind, and if it is, we let the sail out, so
we are less likely to slow down or be blown off course when changing our tack
through the wind.

All this is only true when the boat is making its way toward the goal we set for it. If it
determines that tipping over is an imminent problem, it will check whether we are
heading into or away from the wind. If we are heading into the wind, it will pull the sail
in, and if we are heading away from the wind, it will let the sail out.

7 Logging

In charge of this section: Elizabeth

When the boat is running autonomously on the water, we cannot always see what is
going on inside it or the code. This is especially true when we lose connection to it,
which happens on occasion. However, in order to find out what happened if we have
a problem, we need to see the data. To solve this problem, we have implemented a
data logging system that allows us to see the boat’s status at a given time after the
fact. In addition, finding out how the boat responds to various circumstances allows us
to improve the response if we are unsatisfied with its performance.

On the implementation level, the logger is implemented as a class, which prevents
non-logging code from interfering with its operation. This helps standardize the way
things are written to the log files and prevents the log files from being opened multiple
times or other such memory issues.

In addition, instead of writing directly to the file every time we want to log data, we
have a subroutine run in the background to write data to the files. More specifically,
this subroutine stores log messages in an internal queue (memory buffer) before writing
to the disk. By writing multiple log messages to file at once rather than each time the
logger is called, the number of computationally expensive disk writes is limited. This
allows logging functionality to be called within time-critical loops, such as our mission
execution code.

We have two different logs, both of which operate on the same code but write
different information to different files.

Status Logging

The first log we have is a data logger, which logs the status of the boat once every
second. Examples of the types of information we log are the wind direction and
speed, how fast the code is moving, our network status, and what commands the
code is outputting to the boat. Logging these allows us to determine whether the boat
is responding correctly to external stimuli and the limits of our connectivity to our boat.
In addition, we can later look over how the boat responded to various stimuli and
change how we want to respond in order to improve our performance. It logs by
pulling various pieces of data off the global, formatting them into a text string, and
saving it to the file.

Message Logging

The other log we have is a message logger, which logs messages about the status of
the boat when we tell it to, as well as the time at which that message occurred. For
instance, the operator of the boat can type in their own message – perhaps “It started
raining”, and the log would note that fact and when it happened. This could help us
understand if we have drastic changes in our sensor data by noting things that
happen that the boat is incapable of knowing about. It also has proved to be useful
for taking notes while testing for everyone to see and remember what problems
showed themselves. In addition, the boat itself notes certain pieces of information in
the message log. Currently, it logs when it starts a mission, what type of mission it is,
when it checks off a waypoint, and when it completes a mission.

Status Log Processing

We log far too much information far too often for the logs to be easily read by humans
(though it can be done), so we have a separate piece of log reading code. What this
code does is it pulls the file and looks for the beginning of each time we wrote to the
file. From there, it reverses the encoding we used to put the data into text to get the
data back out, and then iterates through every time we wrote to the file and graphs
the pieces of data.

Figure 25: Data logger graphing position data.

Message Log Processing

The message log, while smaller, can also generate a large amount of information
when run for long periods of time, and intersperses mission and user messages
indiscriminately. To make it easier to read, we also have code that processes the
message log. It goes through the log line-by-line and checks what type of message
each message is. It then sorts the messages into either user messages or mission-
related messages, and if it is a mission-related message determines how long the
mission ran and whether or not it was aborted by the user partway through.

8 Operator Control Unit (OCU)

In charge of this section: Jason

In order to facilitate control, debugging, and tuning of the sailbot code, the team has
built a multi-featured OCU that provides easy access to several useful functions.

Figure 26: Full OCU interface.

Monitoring

In charge of this section: Jared

The ability to monitor the information which affects the decision-making of the boat is
critical for debugging during system development and for effective operation during
deployment. For example, if the boat is behaving erratically, the ability to monitor the
sensor data acquired by the boat could indicate the source of the problem. It is also
possible that the source of the erratic behavior is not the data, but the response of the
boat, in which case the operator can use the sensor data to effectively control the
sailbot with manual override.

Monitoring is accomplished by packing up all of the information relevant to the user
on the sailbot and passing it to the OCU using our network stream communication

protocol. The OCU acquires the most recent monitoring data sent by the sailbot,
performs any necessary processes, and then displays the information to the operator.

Figure 27: the OCU in mission monitoring mode showing a simulated mission. The current mission is
visualized, along with key data such as the goodness functions currently being considered. More

detailed telemetry is available on a second tab.

Networking

In charge of this section: Jared

Network connections to-and-from the sailbot are implemented as reader and writer
classes where each instance maintains its own separate channel of communication.
Fundamentally, both the reader and the writer are Network Streams, a TCP/IP
communication protocol written by National Instruments specifically for streaming
high-throughput data. The reader and writer classes wrap around the Network Streams
to provide the following additional functionality:

• Automatic packet time-stamping
• The ability to abort connection attempts with no finite timeout

• The ability to read either the most recent or the next packet received from the
writer

• Persistent connections which can be re-established if the connection is lost or
after the reader or the writer application is aborted and re-started

As with the logging functionality, the networking functionality has a subroutine which
runs in the background and manages the network communication. Function calls to
the writer store data in an internal queue which is sent across the connection by the
background subroutine; function calls to the reader pull data from an internal queue
which is written to by the background subroutine. This allows time-critical loops to call
the networking functionality, as networking is a non-deterministic process.

Manual Override

In charge of this section: Jason

The OCU is also equipped with a manual override control. The user can take manual
control of the rudder and sails individually, or both together. When manual override is
activated, keyboard input defines rudder and sail setpoints that are sent do the boat.

We have also created a keyboard interface for the manual override which allows the
operator to interface with the OCU without looking at the screen or using a mouse.

Figure 28: Graphical rudder and sail position indicators on the OCU

Tuning

The OCU also provides an interface for tuning constants used internally on the sailbot
for navigation. These include the weightings for our fuzzy-logic goodness functions as
well as various features we have implemented. This has allowed us to test different
configurations, isolate problems and tune key parameters on-the-fly.

Figure 29: OCU tuning constants interface.

 Mission Map

In charge of this section: Jason

Figure 30: The OCU mission map, showing a typical test consisting of global no-sail zones, waypoints,
and a round-buoy mission. The boat is located near the center, facing north-northwest, which is in
agreement with the green “desired direction” vector. The light-blue waypoint has already been
checked off. The parenthesized numbers indicate no-sail zone sizes and waypoint tolerances.

The mission map (shown in Figure 30) is a core feature of the OCU. It provides an
indicator of the geographical location of the sailbot, as well as information about
assigned missions and no-sail zones. The map also indicates the heading of the boat,
its sail position, and displays the desired heading of the boat as a vector. All of this has
been designed to provide key information about the mission status at a glance.

Mission Input

In charge of this section: Jason

The OCU provides 3 methods of input: Mission Definition File (MDF) loading, mission
map input, and GPS input.

MDF Loading
Any mission created on the OCU can be saved as an MDF, or Mission Definition File.
Our MDFs use a combination of binary and XML data to store copies of our mission
objects and no-sail zones for later retrieval. Upon retrieval, the missions are sent to the
boat immediately.

Figure 31: The MDF loading and saving interface elements.

Mission Map Input
The OCU also has an interface that allows the user to input any type of mission by
clicking on the mission map:

Figure 32: Mission Map input panel instructions

This provides an easy way to input a set of missions when exact placement is not
necessary.

GPS Input
For more precise mission input, for example input of missions by tagging buoys, a GPS-
coordinate-based mission input interface is also exposed on the OCU (Figure 33).

Figure 33: GPS mission input interface

This interface allows the operator to save up to 5 GPS coordinates using either the
sailbot GPS or a separate COM-port attached GPS. Those coordinate sets can then be
used to input any type of mission. This allows us to quickly tag buoys and use them to
construct missions.

	1 Introduction
	2 LabVIEW
	Platform A: Simulation
	Platform B: Small R/C (Radio-Controlled) Boat
	Tracking optimizations
	Small RC conclusion
	Platform C: Competition Boat

	4 Sense
	Output Selection
	Driver Structure
	Sensor initialization routine
	/
	Reading serial data
	Parsing NMEA sentences
	GPS Uncertainty
	Defiltering
	Methodology
	Contacting Airmar
	The solution: Theory
	Finding h(t)
	Calculating h-1(t)
	The result
	Limitations

	5 Think
	What is Think
	Different Components, Roadmap
	5.1 Arbiter
	Why/What it does
	Priority Balancing
	Priority Details
	Priority 1: Manual Override
	Priority 2: Don’t flip
	Priority 3: Mission Objective

	5.2 Missions: Determining Waypoints
	Diagram key
	Drive
	Definition
	Action
	End Condition

	Round Buoy
	Definition
	Action

	Pass Between Buoys
	Station Keeping
	Phase 1. Stay in the Station
	Phase 2. Prepare to Leave
	Phase 3. Leave the station

	5.3 Addition of Non-ideal Elements
	Currents affect max speed in any direction.
	Currents and wind affect the path you’ll end up on.
	Shift the goal.
	Error in this approach

	Weatherhelm

	5.4 Navigation (getting to waypoints)
	Elements in Decision Process.
	Fastest way to the waypoint.
	Avoiding No-Sail Zones
	Keeping the Current Heading.
	Combining Goodness Functions.
	Getting wind data while the boat is running

	6 Act
	Rudder Control
	Sail Control

	7 Logging
	Status Logging
	Message Logging
	Status Log Processing
	Message Log Processing

	8 Operator Control Unit (OCU)
	Monitoring
	Networking
	Manual Override
	Tuning
	 Mission Map
	Mission Input
	MDF Loading
	Mission Map Input
	GPS Input

