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1 Introduction 

Person in charge of this section: Jason 

The task of sailing is not a simple one. A sailor must use multiple sensory inputs and 
balance numerous priorities in order to make headway in the desired direction. The 
robot employs a combination of numerical optimization, fuzzy logic (in the form of 
“goodness functions”), and subsumption to accomplish the task of robotic sailing. An 
object-oriented architecture is used to split each of the events of the International 
Robotic Sailing Competition into smaller missions and complete them. 

Our code architecture follows a standard robotic architecture, whereby the active 
area of the code is divided into three sections: Sense, which perceives the outside 
world, processed, and entered into a state knowledge model, Think, where state 
information and goals are combined to make decisions, and Act, wherein actuators 
are controlled to implement those decisions in the physical world. In addition, we have 
programmed an Operator Control Unit (OCU) for the robot, which allows us to 
remotely download mission data, monitor telemetry, and override the robot’s controls. 

2 LabVIEW 

The software platform used on our robot is National Instruments LabVIEW. In the 
LabVIEW Development Environment we use G, a data-flow based, automatically 
parallelizable, graphical programming language that allows for efficient creation of 
highly accessible code. A simple example is illustrated in Figure 1 and 2.  

 

Figure 1: Code in a simple LabVIEW "block diagram" 



 

Figure 2: the automatically created “front panel” interface for the code shown in Figure 1. As the code is 
run, even when it is used within other LabVIEW code, key data can be monitored here. 

LabVIEW was chosen because of the ease with which it can be debugged and its 
integration with National Instruments computing and data collection hardware. This 
has facilitated the effective and seamless testing and development of the same 
LabVIEW code on different computer systems.  

3 Platforms 

Person in charge of this section: Jason 

To provide development flexibility, the code team has three platforms capable of 
running the same Think code. The three platforms are a simulator, a small R/C boat, 
and the competition boat. Each platform, by necessity, has its own sensors and 
actuators, so the Sense and Act code is written separately for each platform. On the 
other hand, the more nuanced and complex Think code has the potential to be 
usable on any sailing platform, and we take lengths to make it so. The same Think 
code is therefore used on our three platforms. By running the same Think code on 
three separately accessible platforms, we are able to test and actively develop the 
code in anywhere from a basement desk to the high seas. We are not reliant on the 
availability of open water, wind or even a physical boat to test our code architecture. 
This has been extremely important in reducing the critical path for the Olin Sailbot 
team. 

Platform A: Simulation 

The first platform, built before any physical devices were available to us, is the 
simulator. Free of timing and location constraints and expensive equipment, the 
simulator lets our coders test algorithms anywhere they have their laptops. 



 

Figure 3: Simulator Sense/Think/Act configuration. For the simulator, everything occurs on the onshore 
host computer. 

Since it doesn’t involve any actual water or wind, the simulation is also largely free of 
realism. The simulated boat has velocity, rotation and location based on simulated 
wind conditions and basic physics approximations that occur on the host computer 
(Figure 3). The complexity of the simulation was initially kept to a minimum, but has 
been upgraded to include realistic currents and drag forces so that more complex 
behaviors can be tested. In addition, we have inserted helper functions that add 
randomness to movement and measurements in the simulator to simulate real-world 
unpredictability. 

Platform B: Small R/C (Radio-Controlled) Boat 

To get our algorithms running in real sailing conditions, we need something that 
controls a real sailboat. Thus, the Small R/C platform. 

http://olinsailbot.files.wordpress.com/2012/02/configuration-simulator.png


 

Figure 4: the Small R/C boat as seen from above, with visual tracking pattern visible astern and Wi-Fi 
receiver visible at the center of the image. 

On the Small R/C platform, we can test algorithms that can easily be transferred over 
to the race boat. The Small R/C platform consists of an off-the-shelf 1m Vela remote-
control sailboat modified to carry a Wi-Fi-connected receiver in place of the stock RC 
receiver. The boat runs in a 20ft diameter pool in Olin’s Large Project Building, with a 
set of fans for wind.  

 

Figure 5: Small R/C Test Platform Sense/Think/Act configuration. 

http://olinsailbot.files.wordpress.com/2012/02/configuration-smallrc.png


Since there is not enough space for sensors and computing power on the boat, the 
sensing and “think”ing occurs on an offboard computer (Figure 5). An overhead 
camera using machine-vision tracking algorithms provides simulated “sensor data” to 
the Think section of the code, converting the location of the boat to simulated UTM 
coordinates.   

Tracking optimizations 
With the varying lighting conditions in the pool, it proved challenging to reliably track 
the motion of the boat in the pool. 

Two tracking patterns, one the black/white inverse of the other, are tracked 
independently, such that only one needs to be found in order for the boat’s location 
to be found. When both patterns are detected, the locations are used in conjunction 
to approximate the location of the boat. 

To reduce false positives, the area of the camera outside the circle of the pool is 
masked out of the image before tracking occurs. 

Small RC conclusion 
When the Small R/C boat gets lost and goes adrift, it’s always within reach of the pole 
that we keep handy for just such an occurrence. This platform is fantastic for 
debugging and tuning, but it’s still in a “sandbox”, several steps away from the high 
seas. 

Platform C: Competition Boat 

This brings us to the most important platform: the competition boat. For the 
competition and the future we’ll need a self-contained system that can run our code 
and sail on the high seas. For this we’re using a National Instruments single-board RIO 
onboard our 2m custom-built sailboat. 



 

Figure 6: Competition Boat Sense/Think/Act configuration. All computation occurs on the onboard real-
time computer, which interfaces with the onboard sensor suite and motors. 

4 Sense 

In charge of this section: Jaime 

Our sensing requirements are fulfilled by a single all-in-one sensor: the Airmar 
WeatherStation. General specifications for the sensor can be found in Section. We 
wrote our own sensor driver in LabVIEW to parse the NMEA 0183 serial data output by 
the sensor. In addition, we have implemented a “defilter” to counteract the 
WeatherStation’s built-in smoothing functions. 

Output Selection 

The WeatherStation is capable of outputting a wide range of NMEA 0183 data 
packages, each at variable frequency up to 10Hz. However, the sensor is limited by a 
maximum 38400 baud rate, so we programmed it to output only the relevant subset of 
its full capability: 

Header Data type Freq. (Hz) 
GPDIM Datum Reference 0 
GPGGA GPS Fix Data 0 
GPGLL Geographic Position—Latitude and Longitude 5 
GPGSA GNSS DOP and Active Satellite 0 
GPGSV Satellites in View 0 
GPRMC Recommended Minimum GNSS 0 
GPVTG COG and SOG 5 
GPZDA Time and Date 1 
HCHDG Heading, Deviation, and Variation 0 

http://olinsailbot.files.wordpress.com/2012/02/configuration-competition.png


HCHDT True Heading 5 
TIROT Rate of Turn 10 
WIMDA Meteorological Composite 1 
WIMWD Wind Direction and Speed 0 
WIMWV Wind Speed and Angle 5 
WIMWR Relative Wind Direction and Speed 0 
WIMWT True Wind Direction and Speed 0 
YXXDR Transducer Measurements 0 

 

Driver Structure 

The general structure of the driver is: 

1. Initializing the sensor 
2. Reading the serial data one byte at a time and bundling it into NMEA sentences 
3. Parsing each NMEA sentence to extract and store the data 

The sensor must be initialized every time it is powered on. After that, the serial read 
loops through bytes until it has assembled a full NMEA sentence. The sentence is 
passed to the NMEA parser, which extracts and stores the data. 

Sensor initialization routine 
The sensor’s default start-up setting (which cannot be changed) is to communicate on 
4800 baud. We want to maximize the serial communication rate, so every time we start 
up we have to reprogram the sensor to communicate on 38400 baud. This initialization 
routine is shown in Figure 7. 



 
Figure 7: WeatherStation initialization routine: “1A Helper – Init Sensor.vi”. First, the VI opens a serial port 
at 4800 baud and checks to see if it can read data from the sensor. If so, it commands the sensor to set 
its baud rate to 38400 instead, then closes the original serial port and opens a new one at 38400 baud.  

Reading serial data 

During normal operation, the sensor reads and parses on NMEA sentence at a time via 
the “1A Read Sensor Data.vi”.  

NMEA 0183 sentences are structured: 

$HHHHH,…*ss 

In which the “$” denotes the start of a sentence, the “HHHHH” is a five-character 
header describing the data package to follow, the “…” is a string of comma-delimited 
data, and the “*ss” is the two-character checksum at the end. Thus, the VI waits for a 
“$”, then fills a string with any characters between the “$” and the next “*”, the 
checksum marker. This is illustrated in Figure 8. 



 

Figure 8: Reading one sentence of NMEA 0183 data. The VI reads serial data one byte at a time, first 
waiting for the “$” which denotes the start of a sentence, then saving each byte in a string until the end 

“*” checksum marker is reached. 

 

Parsing NMEA sentences 

The “1A Interpret NMEA Sentence.vi” parses a single NMEA sentence to extract data. It 
also updates the relevant global variable when appropriate.  

 

Figure 9: An example of NMEA sentence parsing. 



GPS Uncertainty 

In charge of this section: Elizabeth 

We rely on the GPS for a significant portion of our information. In addition to our 
position, we use it to calculate our velocity, and, from there, the apparent wind. 
Furthermore, knowing our position is essential to knowing if we have accomplished any 
of our missions. As a result, knowing how accurate it is at any point is extremely 
important. According to Airmar, under optimal conditions our sensor should be 
accurate to within 3 meters. However, these optimal conditions are very specific. We 
need a clear view of at least four satellites, as well as being able to contact an 
additional wide area augmentation system (WAAS), which provides adjustment data 
to the sensor. 

In testing, we determined that under most circumstances, we tend to have drift of 
about 5 to 10 meters over a period of 10 minutes. As a result, while we can trust our 
GPS to have a fairly accurate difference between two points in close succession, over 
time it will not be nearly as reliable. This is in part because we do not consistently 
communicate with the WAAS satellite. 

To improve and manage the error within our GPS calculations, we took a few steps. 
First, when the GPS only has a view of 3 satellites or has a bad view of more than 3, it 
uses a “2D” fix, in which it cannot determine altitude. In this mode, it is less accurate. 
However, it is possible to give it a fixed altitude for it to use when it is in this mode, 
which increases its accuracy, so we did. It is also possible to get a reading of the 
estimated precision from the sensor, which is called the dilution of precision. To help 
the human in the loop understand the potential inaccuracy and change their 
commands accordingly, we acquire this information and display it on the OCU. 

Defiltering 

In charge of this section: Jason and Steven Z 

In testing, we found that the wind speed and direction outputs from the Airmar PB200 
sensor are filtered with some kind of moving average filter such that any sudden 
change in wind speed or direction input results in an output with a lag on the order of 
a few seconds of time lag. 

For example, Figure 10 shows a trial we did of measuring the PB200’s wind direction 
sensitivity by suddenly rotating the PB200 while facing a fan. The response time of the 
PB200 is on the order of ten seconds. 



  

Figure 10: Airmar PB200 wind direction response 

The PB200’s wind speed output has similar sensitivity issues: 

 

Figure 11: Airmar PB200 wind speed response 



Obviously, this kind of response is not ideal, since our boat is making decisions about how to trim the sails and 
rudder on the order of seconds, not tens of seconds. Deviation of measured wind direction from actual wind 
direction could cause huge miscalculations. Wind speed sensitivity is not as important as wind direction, but could 
still affect performance. 

Methodology 
We took video (http://youtu.be/XG9UZ7fsSPE) showing us doing an impulse and step 
response of wind speed. Ideally we’d use a wind tunnel, but we hacked something 
together with a fan and a big wooden board. 

Contacting Airmar 
We called Airmar and their sales rep. informed us that indeed, the output of the wind 
sensor is filtered “over many seconds” since that’s what the majority of users 
(presumably owners of non-robotic boats) demanded. 

 
Evidently, some customer segments  had similar needs as us and wanted a more 
sensitive wind sensor, so Airmar plans to release a sensor with unfiltered output later this 
year. The sales rep. told us that they may be able to get us a sample of this sensor 
early. The sales rep. also promised to ask the engineering department and find the 
filtering specifications for us, but Airmar never responded to our repeated email 
requests. Thus, we decided characterize the filter ourselves and create an “unfiltering 
filter,” or “defilter”, in software. 

The solution: Theory 
The theory behind unfiltering the PB200 is rather simple. The PB200 applies a filter h(t) to 
the input signal (in this case, the actual wind speed or direction). We want to create a 
filter in software that negates it with impulse response h^(-1)(t). 
Ideally, the system diagram would look like this: 

 

Figure 12: “defiltering” concept diagram 

 
The output signal from our filter will inevitably have noise or other source-induced error 

http://youtu.be/XG9UZ7fsSPE


(denoted by s(t) in the diagram above). We want to minimize s(t) when we construct 
h^(-1)(t) 

Finding h(t) 
The first step to constructing h^(-1)(t)  is finding the impulse response h(t). As the name 
suggests, this is as simple as giving the PB200 a sudden, but short, gust of wind for wind 
speed, and a quick rotation back and forth for wind direction. We used the fan and 
wooden board technique described above for generating the short and sudden 
gust#. We smoothed the data a bit to get the following impulse response for wind 
speed: 

It was a bit tricky to collect data for the impulse response of wind direction. We ended 
up taking the time derivative of the step response to get the following plot: 

Calculating h-1(t) 
A simple way to calculate h^(-1) (t)  is just to take the inverse Fourier transform of the 
reciprocal of the frequency response H(ω). To show why this works, we have the 
condition for h^(-1) (t)   such that 

 
h(t)*h^(-1) (t)=δ(t) 

 
h(t)*h^(-1) (t)*x(t)=x(t) 

where * is the convolution operator. Taking the Fourier transform of both sides, we get: 

H (ω )⋅H ^(-1) (ω)=1 

 
So the Fourier transform of h^(-1) (t) is just the reciprocal of the Fourier transform of h(t). 
However, the problem with this direct approach is that any small noise in H(ω) 
becomes really big as one takes the reciprocal. So we used a more sophisticated 
approach that compensated for this effect for small values of H(ω). We used a 
threshold gamma inverse filter adapted from here. 

The result 
Our “unfiltering” filter works quite well. Here’s a video of the wind speed filter working. 
Pay attention to the laptop screen on the bottom left. The white line shows our 
defiltered output, while the red fill shows the direct, filtered output from the PB200. You 
should be able to see how much more responsive the white line is than the red filled 
line: 

Limitations 
We encountered some problems applying this technique to the wind direction data. 
The main problem was the data wrapping that is inherent with angular measurements 

http://www.owlnet.rice.edu/~elec539/Projects99/BACH/proj2/code/inverseFilter.m


(when wind is blowing at 350 degrees, a slight movement can cause the data to jump 
to 0 degrees). We resolved this by playing around with some angle unwrapping 
functions. In the end, we used the filter coefficients generated for wind speed for 
angle. It seemed to work rather well. 

 
Internally, the PB200 apparently measures wind speed by measuring wind speed in x 
and y axes independently and pythagorating the vectors. Apparently, the individual x 
and y-direction speed measurements are filtered before being summed. Evidence of 
this comes from our experiments when the PB200 is at steady state wind speed, any 
rotation causes the speed to quickly drop down to 0 before slowly coming back to 
steady state. This is something we can’t really address, so we’ll have to hope that this 
effect doesn’t affect things too much during competition. 

5 Think 

In charge of this section: Luis 

What is Think 
The think loop is responsible for synthesizing behaviors which can be performed by the 
act loop using as input the data collected by the sense loop.  The majority of the 
control logic is contained within the think loop.  We have designed the system such 
that the think loop can be utilized modularly between different boat platforms.  This 
section will detail the processes which take place in the think loop. 

Different Components, Roadmap 
The think loop contains the code which determines decision priorities (the arbiter), 
organizes the structure used to define missions and objectives (mission class), and 
makes navigational decisions (waypoint navigation).  These overarching processes are 
discussed in order in this section. 

 Arbiter 5.1

In charge of this section: Luis 

Why/What it does 

The purpose of the Arbiter is to determine which high level priorities should be 
considered.  We run 4 algorithms in parallel that output sail and rudder setpoints.  Each 
algorithm considers one of four primary goals of the boat: 

-Manual Override: do what the controller is telling it to do 

-Don’t Flip: that would be bad 



-Mission Objective: so that we may win 

The arbiter decides which of these algorithms has priority to ultimately decide what the 
‘Act’ block will act upon. 

Each algorithm must be constantly running, which means there needs to be a system 
to continuously monitor each algorithm and output a pair of setpoint values. 

Priority Balancing 

In order to organize these priorities, we introduced the idea of “soft” and “hard” 
priorities.  The soft priority of an input to the arbiter is hardcoded into the arbiter.  The 
purpose of the soft priority is to define which functions are generally more important.  
The algorithms are ordered in “soft” priority like so: 

 

“Soft” priority is used to distinguish from “hard” priority where “hard” priority will be used 
to denote which algorithm is setting the setpoints for the boat at any given moment in 
time.  Since we do not always want to control the boat, and the boat is not always in 
danger of flipping, there must be a system to determine when to consider these 
priorities and when to pass control onward.  “Hard” priority is determined by a pair of 
Boolean flags that each objective outputs.  When a Boolean flag is set to true, the 
algorithm is telling the arbiter “listen to my output now”.  The arbiter will consider this, 
and if no other algorithm with a higher “soft” priority is outputting true for that flag, the 
arbiter will give “hard” priority to this algorithm.  The sail and rudder setpoints are set 
independently (i.e. each algorithm outputs 2 flags), both in this fashion. 

*Default Setpoints are used only when for any reason no input is giving instructions to 
the arbiter.  In this case we would like a default behavior so that our code has 
something to do. 

Priority Details 

Each priority type has a method which determines when it takes priority and what it 
does with the priority. These are as follows: 

1. Manual Override 

2. Don’t Flip 

3. Complete Mission 

4. Default Setpoints* 

Arbiter 

Setpoints
& flags 

Final 
Setpoints 



Priority 1: Manual Override 
In charge of this section: Jason 

This priority takes effect when a manual override signal is received from the OCU over 
the network stream. The operator at the OCU can take individual control of the sails or 
rudder as needed. For more details of OCU operation, see section 8 (page 40). 

Priority 2: Don’t flip 
In charge of this section: Olli 

Priority 3: Mission Objective 
In charge of this section: Luis 

The mission objective priority is active so long as we are not at risk of flipping and the 
operator has not taken manual control.  The bulk of the intelligence of the boat exists 
in the mission objective.  A detailed explanation of the mission objective follows in 
section 5.2. 

 Missions: Determining Waypoints 5.2

In charge of this section: Jared 

We have divided the various challenges of the competition into a series of smaller 
tasks which we refer to as missions. Any possible sailing challenge can be fully 
described as a serial combination of missions. A competition event is programmed as 
a series of one or more of these missions, which are executed in successive order. The 
current mission will have full control over the path-planning of the boat until the mission 
is complete, at which point the next missions will be started. 

This approach has two primary difficulties: 

• Determining a complete basis set of missions from which larger challenges can 
be accomplished 

• Providing a given mission with full control over the path-planning of the boat 

Rather than determining a complete basis set for missions, we created a modular 
design which allows us to implement new types of missions as necessary. If the set of 
implemented missions is not sufficient to accomplish some future goal, we can simply 
modify the set of missions. Through the abstraction of mission interfaces (the actions 
that this class can perform), the updated set of missions will integrate seamlessly with 
the existing code. 

We implement this abstraction in LabVIEW by creating a GenericMission class which 
defines the public interfaces common to every possible type of mission. The four 
interfaces are:  



1. A method which runs a start-up sequence for the mission 
2. A method to update the current waypoints based on mission state and sensor 

data 
3. A method which indicates whether or not the mission is done 
4. A method which indicates the general physical location of the mission, so that 

the previous mission can set the boat on an appropriate course to begin the 
new mission. 

All actual missions are child classes of this generic, abstract class. The currently 
implemented class hierarchy is shown in Figure 13. Each mission only needs to override 
these four methods and it will integrate seamlessly with the existing architecture. Due 
to the object-oriented structure, the proper version of each of these methods is called 
based on the identity of the caller child class. 

 

Figure 13: Object-oriented mission structure diagram. Generic Mission defines all of the necessary 
interfaces for any child class to be successfully executed by the Think code. Currently, we have defined 
four child classes—one for each mission type. Adding another mission type is as simple as creating 
another descendent class of Generic Mission. 

A competition event is programmed as a series of one or more of these missions, which 
are executed in successive order. At any point in time, the mission that is currently 
being executed keeps a list of next waypoints for the sailbot to get to, along with a list 
of no-sail zones, which the sailbot avoids entering. 

The current mission is given full control over the path-planning ability of the sailbot by 
being provided with the ability to control the set of waypoints that the boat tries to 
reach and the list of no-sail zones which the boat tries to avoid. We have found that 

Generic 
Mission 

Drive Round buoy Pass between 
buoys 

Station 
keeping 



these two abilities are sufficient for each of the currently implemented missions to 
guide the sailbot towards their completion. 

The user is able to programmatically add missions to the sailbot upon start-up or while 
running through the OCU. When the user requests that a new mission be added from 
the OCU, this new mission is placed into a queue of GenericMission objects—the 
parent class of all missions. During each cycle, the “Think” loop checks to see if the 
current mission is complete. If so, it removes the first mission from the queue, makes this 
mission the new current mission, and then starts the mission. The method which 
updates waypoints is then called by the current mission. This method will modify the 
waypoints that the boat is constantly trying to satisfy. In this way, each mission is able 
to guide the actions of the boat until the mission determines that it has been 
completed. By stringing together a series of these missions, a large, complex task can 
be completed systematically.  

Diagram key 

In charge of this section: Jason 

 

Figure 14: Diagram example showing the symbols we use. 

Drive 

In charge of this section: Jason  

The Drive mission is the most basic, and instructs the sailboat to sail to a single 
waypoint. It is used internally by our team to test the robot’s navigational capabilities. 
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Figure 15: the sailbot completing a Drive mission. 

Definition 
The drive mission is defined by a single waypoint (with radius) with any appropriate no-
sail zones (with radii).  

Action 
When a Drive mission becomes active, it places a single waypoint with its no-sail zones 
into the waypoint list. 

End Condition 
A Drive mission is complete when the waypoint has been reached. 

Round Buoy 

In charge of this section: Olli 

The algorithm to round buoys has to ensure a certain behavior of the boat: 

• The boat has to round the buoy on the desired side 
• The official rules for rounding buoys have to be regarded      
• The boat must not turn into irons while rounding the buoy 

Definition 
The drive mission is defined by a single UTM location and a direction of rounding. 

Action 
Different wind directions make determining a fixed path around buoys almost 
impossible. During sailing competitions, many paths can be chosen depending on 
opponents, wind speed & direction. To address that, we developed a pattern that 
determines the ideal path around a buoy.  The path is calculated by working 
backwards.  The following steps determine the way around the buoy: 

1. Create a start and endpoint in a distance determined by the waypoint 
tolerance and the safety distance 

Waypoint 
(user-defined radius) 

  
 

 



2. Determine the heading from the endpoint to the next planned waypoint, based 
on wind speed 

3. Set points on this line in the other direction (behind the rounded buoy) 
4. Determine the headings from the starting point to each of the points set in 3. 
5. Choose the best one of them (fastest and closest to buoy) 

Rounding a buoy is one of the missions in the sailboat competition. To successfully 
round buoys in actual sailing competitions, the teams have to regard not only the 
wind direction, but also the opponents and their position relative to the buoy and their 
own boat. Therefore a wide range of different rounding tactics exist, and most of them 
include staying close to the buoy. 

We use a basic way of rounding the buoy, in part because the GPS accuracy does 
not allow us to get too close to the buoys (danger of rounding them on the wrong side 
or sailing into them), and because we cannot react to changing wind conditions as 
quickly as humans can through watching the water and weather. 

At the sailboat competition, the rules for rounding a buoy imply a line which is 
perpendicular towards the “leeward leg”. In the navigation and the long distance 
race, the buoys are placed in a way that the boat will always go with or against the 
wind to round it. To make this rule more applicable to other challenges and races, we 
choose the line from the next waypoint of the mission to the buoy and define a 
perpendicular line on this one for the start and endpoints of the buoy rounding.  

This makes the Round Buoy code work in the two races where rounding buoy is an 
official task, but also in other races if wanted. 

Regarding these rules, our tactics for rounding buoys is to build up the ideal path 
backwards. Three points will be created to determine the way around the buoy: 

Step 1: Depending on the rounding direction, the start and the end point of the 
rounding path is created. They will be placed at a predefined distance, which is the 
point tolerance plus an additional value, to avoid either checking the wrong waypoint 
or running into the buoy. The points are placed on a line that has been calculated 
previously. 



 

Figure 16: Round Buoy Step 1 

 

Step 2,3: Starting at the endpoint, a line towards the rounding side of the buoy is 
created. This line has the length of the distance between start and endpoint, to avoid 
running away from the buoy during the turn. It is at an angle of 45 degrees towards the 
line from the endpoint to the starting point. 

 

Figure 17: Round Buoy Step 2 

 

There are five points created on this line, all of them are potential waypoints. An 
algorithm calculates the heading towards each waypoint. At the same time, the best 
angle VI calculates the fastest heading towards each of those points. The point with 



the smallest difference between actual direction and fastest direction will be set as 
waypoint. 

 

Figure 18: Round Buoy Step 3 

 

While building up this system, we also had the idea to include the heading towards the 
next waypoint as a factor for choosing the angle of the line. This was not efficient 
though, as this heading was often far too steep, causing the boat to go a longer path 
than necessary. Even though the boat speed would be optimized in this scenario, the 
overall time for rounding the buoy was unpredictable and often times longer than in 
the running version.   

This VI continuously recalculates the waypoint until it reaches the starting point. This 
ensures that the waypoints change if the wind changes before the rounding started. 
After the starting point has been reached, the CI stops recalculating its waypoints, to 
avoid changing the points while trying to cross it (might end up in a loop or getting 
further away from the waypoint). 

End Condition 

The Round Buoy VI creates an array with three waypoints: The Startpoint, the 
calculated crossing point and the Endpoint. This array is inserted into the waypoint 
array. After this array is created, the VI will be terminated and waits for its next call. 

Pass Between Buoys 

In charge of this section: Andrew  



Passing between buoys is a mission in which the boat passes between two buoys in a 
specified direction.  This is a subtask of the Navigation Test and the Long Distance 
Course.  On the Long Distance Course, the distance between buoys is 40 meters, 
making the task easier.  The Navigation Test employs buoys that are spaced 3 meters 
apart.  With the limited accuracy of our GPS, which can drift up to seven meters, this 
will be difficult.  Additionally, we have to ensure that, no matter the conditions, we 
follow a path between the buoys.  We use a set of three waypoints to more clearly 
define the safe path through these buoys.  The path is shown in Figure 28. While a 
simple, straight path, we have to consider the distances between the waypoints, and 
the radii of the tolerances.  This avoids the boat trying to travel around the wrong side 
of the buoys, because of a strange, but optimal, path. We choose relatively tight 
tolerances for the first two waypoints, to ensure a straight line.  However, the third 
waypoint is easy to check off, since it is positioned after the passing. We also 
incorporate small No-Sail Zones in to the waypoints, to avoid a collision with the buoys 
themselves, and to further encourage the boat to aim for the center. 

 

Figure 19: Path used for the boat to pass between two specified buoys. The waypoints are 
approximately eight meters from each other. 

Station Keeping 

In charge of this section: Andrew  

Station Keeping is an entire event in the competition, and is also structured as a single, 
integrated mission in our code.  The event involves sailing inside a 40 meter square 
boundary for five minutes, and leaving the boundary as soon afterwards as possible.  
The coded mission is divided into three phases.  First, we simply try to stay in the station.  
Second, as the end nears, we continue this goal, but put ourselves in a position more 
conducive to quickly leaving.  Third, with seconds to go, we leave the station as 
quickly as possible.  Each of these phases has its own challenges and considerations, 
described below. 

  

  

  

Port Buoy 

Starboard Buoy 

   
  



Phase 1. Stay in the Station 
The first step of station keeping is simply to stay inside the box.  To achieve this, we 
continue to give the boat waypoints that keep it in control and away from the edges 
of the box.  We experimented with many patterns, but chose a single waypoint as our 
pattern, because our boat was successful at inventing its own pattern to continue to 
track the same waypoint.  The pattern is shown in Figure 29. Experimentally, this pattern 
worked better than using a complicated set of waypoints with theoretical benefits, 
such as minimizing tacks.  The waypoints simply the midpoint shifted upwind by five 
meters, so that if the boat does lose control, it has more time to recover before it is 
pushed downwind out of the box.  Each of our waypoints also incorporates No-Sail 
Zones (section 1.6.1), which keep the boat from taking paths outside of the box to the 
next waypoint. This cycle continues, until there are 20 seconds remaining, at which 
point, the boat begins Phase 2.  

 

Phase 2. Prepare to Leave 
Our strategy for preparing to leave the station is to sail along one of the boundaries of 
the box, so that we do not have far to travel when we want to leave.  The challenge 
here is deciding which edge to follow, and which direction to follow it.  We start with 
eliminating the two edges that are more downwind, again so that we do not 
accidentally drift out.  In Figure 29, this would be the bottom and right edges.  To 
decide between the remaining two, we look ahead to which direction we would 
travel along them, and compare those paths.  We will choose the direction that allows 
us to move to the next preferred edge if we happen to reach the end of the first edge 

 

 

 

 

Figure 20. A map of Phase 1 of the Station Keeping Mission, including 
four boundaries, two waypoints, and No-Sail Zones near the boundaries. 

 



during this phase.  Knowing this, we can pick the edge that would put the wind more 
behind us, so that there is no danger of sailing into irons and losing speed and control.  
With this method, we are able to sail upwind, but at least 45 degree off of irons (since 
the two options are 90 degrees apart).  We also are able to continue sailing on an 
upwind edge if we need to continue the phase.  This phase can go on indefinitely, 
sailing back and forth along this edge.  Since our average speed is 3 m/s, we expect 
getting to the edge (20 meters) and traversing the edge (30 meters) to take 16 
seconds.  When only three seconds remain on the five minute timer, the boat begins 
Phase 3. 

 

 

Phase 3. Leave the station 
The goal of Phase 3 is to leave the station as soon after the timer as possible. The 
beginning of Phase 3 is timed well enough so that its goal is to leave as quickly as 
possible altogether.  To do this, we make a waypoint outside of the box, this time 
without No-Sail Zones.  The question of where to put the waypoint is resolved by 
picking one which results from a heading with the greatest velocity towards the edge.  
This takes both angle and speed into account.  We also include a preference for not 
tacking.  Once we are past the boundary line, we are done with the mission. 

 Addition of Non-ideal Elements   5.3

In charge of this Section: Andrew 

  

 

 

  

  

  

  

Figure 21.  Path of the boat when following the station's edge. 

   



The formulas in Section 4.4 give us the fastest ideal path.  However, that path is difficult 
to stay on, since currents and wind push the boat around, in a non-forward direction. 
This is called leeway.  Additionally, currents affect the max speeds given by the 
idealized polar plot.  Lastly, we have to consider weather helm, which is the tendency 
of the boat to turn upwind, due to heeling.  Where we consider these factors is shown 
in Figure 32.  The details of how we resolve them are discussed below. 
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Figure 31.  Block diagram showing the elements that determine steering, before non-ideal 
conditions: leeway, currents, and weatherhelm. 



 

Currents affect max speed in any direction.   
Because polar plots are affected by currents alone, and not leeway, we cannot 
change the polar plot, since we do not separate these terms.  However, a theoretical 
solution for the shifted polar plots follows. Water currents affect the speed that the 
boat can travel by exerting a force on the boat.  The speed that the boat can travel 
in any direction is affected by the current, and so we must consider this before we 
determine the fastest route to a waypoint.  We do this by altering the polar plot that is 
used in our algorithm.  Instead of using absolute wind, in the polar plot, for each point, 
we add the projection of the current onto that direction with the speed given by wind.  
However, instead of using absolute wind, we use the wind speed relative to the 
current.  To illustrate this, think of the case where the wind vector is equal to the water 
current vector.  The max speed is not the sum of these, because the wind does not 
add any force beyond the current. 

Currents and wind affect the path you’ll end up on.   
Not only does the current affect the max speed in the direction that the boat faces, it 
pushes the boat laterally, so that the course that we map out for the boat is not the 
real course that the boat takes. Wind has the same effect, as it is able to push the 
boat sideways in the water, against the drag force of the keel and hull.  We can 
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Figure 32.  Block diagram showing the elements that determine steering, after the consideration of 
currents and drift from wind. 



calculate the combined effects of these by measuring our movement angle and 
comparing it to our heading, or expected movement angle.  This will give us only the 
current that is perpendicular to our heading, but we will see that this is all we require. 
We can then use this feedback to adjust our plan. 

Shift the goal.   
The solution to this problem is not to turn the boat to stay on the originally-planned 
straight-line path.  This would change wind angle to the boat, and void the 
calculations done for path-planning.  Instead, we can predict the total amount of 
boat translation that the wind and currents will cause, by integrating the effect over 
the time that the calculated path should take.  Then, we recalculate the optimal path, 
using a target that is shifted by this amount.  That way, we use the actual angles to the 
wind in calculating the path. 

Error in this approach 
The problem with this approach is that the predicted amount of wind and current 
translation will change when we alter the target and the path.  We can repeat this 
method, using the recalculated path to predict the total translation, until the amounts 
converge.  However, at this point, we only implement the estimation once, as the error 
is small. 

Weatherhelm 

Due to heeling and the relationship between center of effort on the sails and the 
center of lateral resistance, our boat has a tendency to feel a torque which points it 
more upwind.  To combat this, the rudder must be set at a different angle than 
expected.  This is dealt with using a PID controller, described in section 5.  

 Navigation (getting to waypoints) 5.4

In charge of this Section: Luis 

Choosing a path isn’t simple.  Up until now, we’ve described our goals, and where we 
need to go to accomplish them.  Were we driving a car, we would be nearly done.  
However, sailing is a different kind of beast; in this section we describe the logic 
necessary to cope with the less straight-forward environment on the water. 

Elements in Decision Process. 

Navigation on water becomes a bit more complicated than something like driving on 
a road when dealing with wind and sail angles because the shortest path is not always 
the fastest path.  There are 3 primary elements considered in navigating to a 
waypoint.  These are developed into “goodness functions” which are the main vehicle 
through which the boat heading is chosen.  The goodness function paradigm is rooted 
in fuzzy logic.  A goodness function in essence gives the desirability of a given heading 



with respect to a certain goal, taking a value between 0 and 1 where 1 is the most 
desirable and 0 is absolutely unacceptable.  The benefit of this approach is that 
multiple unrelated considerations may be taken into account with different goodness 
functions.  Furthermore, because many headings have a calculated goodness, the 
algorithm is able to select a heading that is the most agreeable to many 
considerations where a strict logic system may have to deal with conflicting goals in a 
variety of situations.  In particular, we know that the fuzzy logic approach will always 
give a somewhat desirable heading, even if suboptimal, when faced with conditions 
that are unexpected or not accounted for.  We then give each individual goodness 
function an importance weight and take the geometric mean to determine which 
heading is the most agreeable. 

The 3 elements our navigation system incorporates are getting to the waypoint as 
quickly as possible, avoiding no-sail zones, and changing the heading as little as 
possible.  The following sections will discuss each of these elements in depth and show 
how we develop goodness functions that represent these objectives. 

Fastest way to the waypoint.   

We start with the observation that there is a pair of optimal angles for the boat to 
travel upon to reach a waypoint if we assume that there will be no change in the wind 
conditions.  Since we do not have any method of predicting these changes, we will 
work under the assumption that there will be none.  We will correct a bit for this 
assumption when we consider the heading change goodness function.  Once we 
agree that there is a single pair of optimal angles, these can be found given the polar 
plot for the boat given the current conditions. 

In Figure 22 we draw and label the general representation of this problem.  The goal 
will then be to minimize 𝒕 = 𝒕𝝋 + 𝒕𝜽, or equivalently, maximize 𝒗𝒏𝒆𝒕 = 𝒅

𝒕𝜽+𝒕𝝋
.  We begin by 

writing the known relationships: 

𝒗𝜽𝒕𝜽 𝒔𝒊𝒏(𝜽) − 𝒗𝝋𝒕𝝋 𝒔𝒊𝒏(𝝋) = 𝟎 

𝒗𝜽𝒕𝜽 𝒄𝒐𝒔(𝜽) + 𝒗𝝋𝒕𝝋 𝒄𝒐𝒔(𝝋) = 𝒅 

Putting the system into matrix form yields 

�
𝑣𝜃𝑠𝑖𝑛𝜃 −𝑣𝜑𝑠𝑖𝑛𝜑
𝑣𝜃𝑐𝑜𝑠𝜃 𝑣𝜑𝑐𝑜𝑠𝜑

� �
𝒕𝜽
𝒕𝝋� = �𝟎𝒅� 

  



Solving this system is easy using Cramer’s Rule 
and gives us: 

𝑡𝜃 = 𝑑 ∗
𝑠𝑖𝑛𝜑

𝑣𝜃 ∗ sin(𝜃 + 𝜑) 

𝑡𝜑 = 𝑑 ∗
𝑠𝑖𝑛𝜃

𝑣𝜑 ∗ sin(𝜃 + 𝜑) 

Solving for 𝑣𝑛𝑒𝑡 gives: 

𝑣𝑛𝑒𝑡 =
𝑣𝜃𝑣𝜑sin(𝜃 + 𝜑)
𝑣𝜃𝑠𝑖𝑛𝜃 + 𝑣𝜑𝑠𝑖𝑛𝜑

 

In order to define a goodness function that 
encompasses this equation and will attempt to 
maximize 𝑣𝑛𝑒𝑡 , we use the softmax function, 
defined for a series of values 𝑥1  to 𝑥𝑛  as: 
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥1, 𝑥2, … , 𝑥𝑛) = log𝑏 ∑ 𝑏𝑥𝑖𝑛

𝑖=1 .  For any 
given angle θ, we will take the softmax of the 
net velocity over every φ, 0<φ<90 in 
combination with the given θ.  The intention 
here is that an angle with a high goodness will 
be part of a pair of angles with a high net 
velocity and will have a high net velocity when 
paired with many angles.  Finally, we turn this 
value into a goodness from 0 to 1 by taking 1-
exp(-softmax/k) where k is a tuning constant in 

units of velocity to normalize our calculated value.  This goodness function should then 
output a high goodness when the tested heading angle has complimenting pairs with 
a short theoretical time to the waypoint. 

Avoiding No-Sail Zones 

In order to avoid no sail zones and encompass this task in a goodness function, we 
begin by considering each no sail zone separately.  We will then combine the 
goodness functions given by each no sail zone by simply taking the product.  Now 
considering a single no sail zone, we define the goodness function to be 1 at all angles 
that are more than 90 degrees away from the direction of the no sail zone.  In other 
words, any angle that does not decrease the distance to the no sail zone is perfectly 
good.  From 0 to 90 degrees (0 being the exact direction of the no sail zone), we 
define the goodness function like so: 

𝑔𝑜𝑜𝑑𝑛𝑒𝑠𝑠(𝑧) = 1 − 𝑒−
1
𝑘∗
𝑑𝑧−𝑟𝑧
90−θ  

Figure 22: Pictorial representation of 
waypoint navigation problem 



where 𝑑𝑧 is the distance to the center of the no sail zone ‘z’, 𝑟𝑧 is the radius of the no 
sail zone (∴ 𝑑𝑧 − 𝑟𝑧 is the minimum distance to the no sail zone), and θ is the angle 
between the tested heading and the center of the no sail zone with respect to the 
current position.  Finally, k is a tuning constant in units of length to normalize our 
formula. 

Qualitatively we can see that as the distance from the no sail zone increases, the 
goodness function increases for all potential headings and that as the heading moves 
toward directly at the no sail zone (θ becoming smaller) the goodness function 
decreases.  Furthermore, as soon as the boat is right up to the radius of the no sail 
zone, the goodness function becomes 0 for all headings that are not away from the 
no sail zone; this is desirable so that if the boat does come near a no sail zone, it will 
inherently be top priority to move away from the no sail zone.  Given this, it is simply a 
matter of tuning the constant k such that we are not too sensitive nor not sensitive 
enough to the no sail zones. 

Keeping the Current Heading. 

The final element in navigating to a waypoint is simply that we would like to turn the 
boat as little as possible.  This serves two purposes: the first is to desensitize the targeted 
heading to small changes in the goodness functions.  This is important so that the boat 
keeps from overreacting in short periods of time and will generally cause the boat to 
change headings more gradually than all of a sudden. 

Secondly, when heading upwind, this goodness function determines the frequency 
the boat can tack at.  Presumably, heading upwind will yield two peaks in the 
goodness function for the fastest way to the waypoint.  If we did not consider the 
importance of maintaining the current tack whatsoever, the boat would tack infinitely 
frequently, essentially approximating a straight line to the waypoint.  However, if we 
weight headings that are closer to the current heading of the boat, the boat will hold 
a tack until the second heading is more desirable than the current heading by a ratio 
of at least the goodness difference defined by the current heading goodness 
function.  This function is simple to define given the current heading ‘h’: 

𝑔𝑜𝑜𝑑𝑛𝑒𝑠𝑠 =  𝑒−�
𝜃−ℎ
𝑘 �

2

 

where again k is a tuning constant with units of radians.  This gives us a goodness of 1 
at the current heading and decreasing goodness as we move away from the current 
heading. 

Combining Goodness Functions. 

The last step in determining the desired heading is the combination of the goodness 
functions described above and selection given this combined curve. The combination 



is actually quite simple, it is a weighted geometric average of the goodness functions.  
We use the geometric average as opposed to the arithmetic average primarily 
because if a given goodness function determines that a certain heading has a 
goodness of 0, we want to avoid this heading at all costs, and this is not guaranteed 
with the arithmetic average. 

Formally, this combination looks like: 

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑔𝑜𝑜𝑑𝑛𝑒𝑠𝑠 = (𝑔1𝑤1 ∗ 𝑔2𝑤2 ∗ 𝑔3𝑤3)
1

𝑤1+𝑤2+𝑤3 

where g1, g2 and g3 are the three goodness functions and 𝑤1,𝑤2 𝑎𝑛𝑑 𝑤3  are the 
respective importance weights.  Once we have calculated this combined goodness 
curve, we select the heading with the highest combined goodness at which point it 
becomes the desired heading which the boat will try to achieve. 

Getting wind data while the boat is running 

In charge of this section: Olli 

The wind sensor is mounted on the bow. As a result, while the boat is on a run the 
sensor is obscured by the sails and cannot get proper wind data. After reading out the 
logfiles from testing, we saw that the apparent wind directions appears to come from 
around +-45 degrees in those cases (wind blows around the sails). The wind speed also 
varies under these conditions. This wind data could not be used for sailing, and the 
boat would start to become unstable as soon as it receives the proper wind data. 

The solution for this issue is to recognize when the boat is on a run. Before the wind 
data becomes wrong, it would be replaced by a calculated approximation of the 
current wind data. The boat would switch back to sailing with the sensed wind data as 
soon as the boat changes its heading by a predefined range. An additional feature is, 
that a “convincing range” would terminate this wind data override if the wind is 
coming from the completely different direction. This prevents the boat from sailing into 
irons in case the wind direction changes completely. 

The functionality of checking the wind range values, calculating the override values 
for the wind data and activating the override is split up into three Vis. 

The first VI is run with every Think Loop iteration. It first compares the wind direction with 
the robot’s heading to determine if the robot is getting into the run range. If this is not 
the case, the current wind data values get written into an array. This array saves the 
wind data of the last five seconds. As soon as the boat is getting into the run range, a 
Boolean is set and the array is not filled further. Instead, the second VI of the so-called 
“Runprotect” function is run. 



This second VI calculates an approximation of the wind data. It reads the previously 
described array and generates this value. Two global variables for wind direction and 
wind speed are set. 

The third VI reads out those global variables. It replaces all previous consumers of the 
Apparent Wind and Absolute Wind data. Thus, while the boat is on a run, any VI that 
uses wind data will instead receive “runprotected”, simulated data. 

 

Figure 23: The Runprotect Status 

6 Act 

In charge of this section: Elizabeth and Olli 

There are two main actuators on the competition boat: The Sailwinch and the rudder 
servo. Both are controlled via PWM signals from our sbRIO. We had to realize the 
following functions: 

• Rudder control with predefined max range 
• No acceptance of out-of-range values for the motors 
• Fine-adjustable neutral rudder position 
• Maximum Sailwinch range 

        Run Range                                              Run Range 

  

Runprotect Off Runprotect On 



 

Figure 24: The Motor PWM Control VI 

 

Rudder Control  

In charge of this section: Olli 

The rudder control function is a PID controller that creates a rudder angle out of the 
current heading and the desired heading. The PID is using hardcoded PID constants. 
The Rudder Control is communicating with our PWM Rudder Control, which allows us to 
adjust a rudder trim in case the rudder is off centered. It is important to mention, that 
the Don’t Flip VI does not override the Rudder control. Even if we are in the Don’t Flip 
state, the PID controller is steering to its desired position. 

The PWM Rudder Control VI also allows us to set a maximum range. All values that are 
out of range will be coerced, or replaced with the closest value in range. 

Sail Control 

In charge of this section: Elizabeth and Olli 



At the heart of our sail control function is a lookup table which has a hardcoded value 
for how much to let out the sail depending on what angle we are to the wind. This was 
done because a lookup table is easier to manipulate than a function to calibrate to 
many varying situations (different sail sizes, different mass distributions of the boat, 
different wind speeds), and because few functions would fit the qualitative shape that 
we need. At the moment, that shape is to keep the sail in from 0 degrees to 45 
degrees, then to let it out in a linear fashion from 45 degrees to 90 degrees, at which 
point we would have the sail halfway out. From there, it again linearly increases until it 
is fully out when the wind is at our backs, at 180 degrees. In addition to this lookup 
table, we test whether the boat is crossing the wind, and if it is, we let the sail out, so 
we are less likely to slow down or be blown off course when changing our tack 
through the wind. 

All this is only true when the boat is making its way toward the goal we set for it. If it 
determines that tipping over is an imminent problem, it will check whether we are 
heading into or away from the wind. If we are heading into the wind, it will pull the sail 
in, and if we are heading away from the wind, it will let the sail out. 

 

7 Logging 

In charge of this section: Elizabeth 

When the boat is running autonomously on the water, we cannot always see what is 
going on inside it or the code. This is especially true when we lose connection to it, 
which happens on occasion. However, in order to find out what happened if we have 
a problem, we need to see the data. To solve this problem, we have implemented a 
data logging system that allows us to see the boat’s status at a given time after the 
fact. In addition, finding out how the boat responds to various circumstances allows us 
to improve the response if we are unsatisfied with its performance. 

On the implementation level, the logger is implemented as a class, which prevents 
non-logging code from interfering with its operation. This helps standardize the way 
things are written to the log files and prevents the log files from being opened multiple 
times or other such memory issues. 

In addition, instead of writing directly to the file every time we want to log data, we 
have a subroutine run in the background to write data to the files. More specifically, 
this subroutine stores log messages in an internal queue (memory buffer) before writing 
to the disk. By writing multiple log messages to file at once rather than each time the 
logger is called, the number of computationally expensive disk writes is limited. This 
allows logging functionality to be called within time-critical loops, such as our mission 
execution code. 



We have two different logs, both of which operate on the same code but write 
different information to different files.  

Status Logging 

The first log we have is a data logger, which logs the status of the boat once every 
second. Examples of the types of information we log are the wind direction and 
speed, how fast the code is moving, our network status, and what commands the 
code is outputting to the boat. Logging these allows us to determine whether the boat 
is responding correctly to external stimuli and the limits of our connectivity to our boat. 
In addition, we can later look over how the boat responded to various stimuli and 
change how we want to respond in order to improve our performance. It logs by 
pulling various pieces of data off the global, formatting them into a text string, and 
saving it to the file. 

Message Logging 

The other log we have is a message logger, which logs messages about the status of 
the boat when we tell it to, as well as the time at which that message occurred. For 
instance, the operator of the boat can type in their own message – perhaps “It started 
raining”, and the log would note that fact and when it happened. This could help us 
understand if we have drastic changes in our sensor data by noting things that 
happen that the boat is incapable of knowing about. It also has proved to be useful 
for taking notes while testing for everyone to see and remember what problems 
showed themselves. In addition, the boat itself notes certain pieces of information in 
the message log. Currently, it logs when it starts a mission, what type of mission it is, 
when it checks off a waypoint, and when it completes a mission. 

Status Log Processing 

We log far too much information far too often for the logs to be easily read by humans 
(though it can be done), so we have a separate piece of log reading code. What this 
code does is it pulls the file and looks for the beginning of each time we wrote to the 
file. From there, it reverses the encoding we used to put the data into text to get the 
data back out, and then iterates through every time we wrote to the file and graphs 
the pieces of data. 



 

Figure 25: Data logger graphing position data. 

Message Log Processing  

The message log, while smaller, can also generate a large amount of information 
when run for long periods of time, and intersperses mission and user messages 
indiscriminately. To make it easier to read, we also have code that processes the 
message log. It goes through the log line-by-line and checks what type of message 
each message is. It then sorts the messages into either user messages or mission-
related messages, and if it is a mission-related message determines how long the 
mission ran and whether or not it was aborted by the user partway through. 

8 Operator Control Unit (OCU) 

In charge of this section: Jason 

In order to facilitate control, debugging, and tuning of the sailbot code, the team has 
built a multi-featured OCU that provides easy access to several useful functions.  



 

Figure 26: Full OCU interface. 

Monitoring 

In charge of this section: Jared 

The ability to monitor the information which affects the decision-making of the boat is 
critical for debugging during system development and for effective operation during 
deployment. For example, if the boat is behaving erratically, the ability to monitor the 
sensor data acquired by the boat could indicate the source of the problem. It is also 
possible that the source of the erratic behavior is not the data, but the response of the 
boat, in which case the operator can use the sensor data to effectively control the 
sailbot with manual override. 

Monitoring is accomplished by packing up all of the information relevant to the user 
on the sailbot and passing it to the OCU using our network stream communication 



protocol. The OCU acquires the most recent monitoring data sent by the sailbot, 
performs any necessary processes, and then displays the information to the operator.  

 

Figure 27: the OCU in mission monitoring mode showing a simulated mission. The current mission is 
visualized, along with key data such as the goodness functions currently being considered. More 

detailed telemetry is available on a second tab. 

Networking 

In charge of this section: Jared 

Network connections to-and-from the sailbot are implemented as reader and writer 
classes where each instance maintains its own separate channel of communication. 
Fundamentally, both the reader and the writer are Network Streams, a TCP/IP 
communication protocol written by National Instruments specifically for streaming 
high-throughput data. The reader and writer classes wrap around the Network Streams 
to provide the following additional functionality: 

• Automatic packet time-stamping 
• The ability to abort connection attempts with no finite timeout 



• The ability to read either the most recent or the next packet received from the 
writer 

• Persistent connections which can be re-established if the connection is lost or 
after the reader or the writer application is aborted and re-started 

As with the logging functionality, the networking functionality has a subroutine which 
runs in the background and manages the network communication. Function calls to 
the writer store data in an internal queue which is sent across the connection by the 
background subroutine; function calls to the reader pull data from an internal queue 
which is written to by the background subroutine. This allows time-critical loops to call 
the networking functionality, as networking is a non-deterministic process. 

Manual Override 

In charge of this section: Jason 

The OCU is also equipped with a manual override control. The user can take manual 
control of the rudder and sails individually, or both together. When manual override is 
activated, keyboard input defines rudder and sail setpoints that are sent do the boat. 

We have also created a keyboard interface for the manual override which allows the 
operator to interface with the OCU without looking at the screen or using a mouse. 



 

Figure 28: Graphical rudder and sail position indicators on the OCU 

Tuning 

The OCU also provides an interface for tuning constants used internally on the sailbot 
for navigation. These include the weightings for our fuzzy-logic goodness functions as 
well as various features we have implemented. This has allowed us to test different 
configurations, isolate problems and tune key parameters on-the-fly. 



 

Figure 29: OCU tuning constants interface. 

 

 Mission Map 

In charge of this section: Jason 



 

Figure 30: The OCU mission map, showing a typical test consisting of global no-sail zones, waypoints, 
and a round-buoy mission. The boat is located near the center, facing north-northwest, which is in 
agreement with the green “desired direction” vector. The light-blue waypoint has already been 
checked off. The parenthesized numbers indicate no-sail zone sizes and waypoint tolerances. 

The mission map (shown in Figure 30) is a core feature of the OCU. It provides an 
indicator of the geographical location of the sailbot, as well as information about 
assigned missions and no-sail zones. The map also indicates the heading of the boat, 
its sail position, and displays the desired heading of the boat as a vector. All of this has 
been designed to provide key information about the mission status at a glance. 

Mission Input 

In charge of this section: Jason 

The OCU provides 3 methods of input: Mission Definition File (MDF) loading, mission 
map input, and GPS input. 



MDF Loading 
Any mission created on the OCU can be saved as an MDF, or Mission Definition File. 
Our MDFs use a combination of binary and XML data to store copies of our mission 
objects and no-sail zones for later retrieval. Upon retrieval, the missions are sent to the 
boat immediately. 

 

Figure 31: The MDF loading and saving interface elements. 

Mission Map Input 
The OCU also has an interface that allows the user to input any type of mission by 
clicking on the mission map: 

 

Figure 32: Mission Map input panel instructions 

This provides an easy way to input a set of missions when exact placement is not 
necessary. 

GPS Input 
For more precise mission input, for example input of missions by tagging buoys, a GPS-
coordinate-based mission input interface is also exposed on the OCU (Figure 33). 



 

Figure 33: GPS mission input interface 

This interface allows the operator to save up to 5 GPS coordinates using either the 
sailbot GPS or a separate COM-port attached GPS. Those coordinate sets can then be 
used to input any type of mission. This allows us to quickly tag buoys and use them to 
construct missions. 
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